6.
Hu C, Huang J, Huang C, Munroe M, Xie D, Li M
. Expressions of anger during advising on life dilemmas predict suicide risk among college students. Psych J. 2022; 11(3):370-375.
DOI: 10.1002/pchj.529.
View
7.
Ahmed A, Aziz S, Khalifa M, Shah U, Hassan A, Abd-Alrazaq A
. Thematic Analysis on User Reviews for Depression and Anxiety Chatbot Apps: Machine Learning Approach. JMIR Form Res. 2022; 6(3):e27654.
PMC: 8956988.
DOI: 10.2196/27654.
View
8.
Kerr W, McFarlane K
. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Curr Neurol Neurosci Rep. 2023; 23(12):869-879.
DOI: 10.1007/s11910-023-01318-7.
View
9.
He Q, Veldkamp B, Glas C, de Vries T
. Automated Assessment of Patients' Self-Narratives for Posttraumatic Stress Disorder Screening Using Natural Language Processing and Text Mining. Assessment. 2015; 24(2):157-172.
DOI: 10.1177/1073191115602551.
View
10.
Grossard C, Palestra G, Xavier J, Chetouani M, Grynszpan O, Cohen D
. ICT and autism care: state of the art. Curr Opin Psychiatry. 2018; 31(6):474-483.
DOI: 10.1097/YCO.0000000000000455.
View
11.
Richardson A, Robbins C, Wisely C, Henao R, Grewal D, Fekrat S
. Artificial intelligence in dementia. Curr Opin Ophthalmol. 2022; 33(5):425-431.
DOI: 10.1097/ICU.0000000000000881.
View
12.
Laumann T, Gordon E, Adeyemo B, Snyder A, Joo S, Chen M
. Functional System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron. 2015; 87(3):657-70.
PMC: 4642864.
DOI: 10.1016/j.neuron.2015.06.037.
View
13.
Deshpande S, Mishra N, Bhatia T, Jakhar K, Goyal S, Sharma S
. Informed consent in psychiatry outpatients. Indian J Med Res. 2020; 151(1):35-41.
PMC: 7055165.
DOI: 10.4103/ijmr.IJMR_1036_18.
View
14.
Wu M, Mwangi B, Bauer I, Passos I, Sanches M, Zunta-Soares G
. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. Neuroimage. 2016; 145(Pt B):254-264.
PMC: 4983269.
DOI: 10.1016/j.neuroimage.2016.02.016.
View
15.
Acion L, Kelmansky D, van der Laan M, Sahker E, Jones D, Arndt S
. Use of a machine learning framework to predict substance use disorder treatment success. PLoS One. 2017; 12(4):e0175383.
PMC: 5386258.
DOI: 10.1371/journal.pone.0175383.
View
16.
Kang M, Kim S, Na D, Kim B, Yang D, Kim E
. Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. BMC Med Inform Decis Mak. 2019; 19(1):231.
PMC: 6873409.
DOI: 10.1186/s12911-019-0974-x.
View
17.
Choi R, Coyner A, Kalpathy-Cramer J, Chiang M, Campbell J
. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol. 2020; 9(2):14.
PMC: 7347027.
DOI: 10.1167/tvst.9.2.14.
View
18.
Sinha C, Cheng A, Kadaba M
. Adherence and Engagement With a Cognitive Behavioral Therapy-Based Conversational Agent (Wysa for Chronic Pain) Among Adults With Chronic Pain: Survival Analysis. JMIR Form Res. 2022; 6(5):e37302.
PMC: 9171603.
DOI: 10.2196/37302.
View
19.
Huijnen C, Lexis M, Jansens R, de Witte L
. How to Implement Robots in Interventions for Children with Autism? A Co-creation Study Involving People with Autism, Parents and Professionals. J Autism Dev Disord. 2017; 47(10):3079-3096.
PMC: 5602062.
DOI: 10.1007/s10803-017-3235-9.
View
20.
Brinker T, Hekler A, Hauschild A, Berking C, Schilling B, Enk A
. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. Eur J Cancer. 2019; 111:30-37.
DOI: 10.1016/j.ejca.2018.12.016.
View