6.
Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H
. Highly selective and active CO reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun. 2017; 8:14675.
PMC: 5344970.
DOI: 10.1038/ncomms14675.
View
7.
Chen D, Zhang L, Du J, Wang H, Guo J, Zhan J
. A Tandem Strategy for Enhancing Electrochemical CO Reduction Activity of Single-Atom Cu-S N Catalysts via Integration with Cu Nanoclusters. Angew Chem Int Ed Engl. 2021; 60(45):24022-24027.
DOI: 10.1002/anie.202109579.
View
8.
Wang Y, Huang Q, He C, Chen Y, Liu J, Shen F
. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO. Nat Commun. 2018; 9(1):4466.
PMC: 6203756.
DOI: 10.1038/s41467-018-06938-z.
View
9.
Liu B, Ye L, Wang R, Yang J, Zhang Y, Guan R
. Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO Capture, Enhanced Photocatalytic Activity, and Product Selectivity. ACS Appl Mater Interfaces. 2017; 10(4):4001-4009.
DOI: 10.1021/acsami.7b17503.
View
10.
Seneviratne S, Donat M, Pitman A, Knutti R, Wilby R
. Allowable CO2 emissions based on regional and impact-related climate targets. Nature. 2016; 529(7587):477-83.
DOI: 10.1038/nature16542.
View
11.
Perdew , Burke , Ernzerhof
. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868.
DOI: 10.1103/PhysRevLett.77.3865.
View
12.
Huang N, Lee K, Yue Y, Xu X, Irle S, Jiang Q
. A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angew Chem Int Ed Engl. 2020; 59(38):16587-16593.
DOI: 10.1002/anie.202005274.
View
13.
Elgrishi N, Chambers M, Wang X, Fontecave M
. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO. Chem Soc Rev. 2017; 46(3):761-796.
DOI: 10.1039/c5cs00391a.
View
14.
Forkel M, Carvalhais N, Rodenbeck C, Keeling R, Heimann M, Thonicke K
. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science. 2016; 351(6274):696-9.
DOI: 10.1126/science.aac4971.
View
15.
Wang W, Himeda Y, Muckerman J, Manbeck G, Fujita E
. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem Rev. 2015; 115(23):12936-73.
DOI: 10.1021/acs.chemrev.5b00197.
View
16.
Qiu X, Huang J, Yu C, Zhao Z, Zhu H, Ke Z
. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl. 2022; 61(36):e202206470.
DOI: 10.1002/anie.202206470.
View
17.
Creissen C, Fontecave M
. Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction. Nat Commun. 2022; 13(1):2280.
PMC: 9046394.
DOI: 10.1038/s41467-022-30027-x.
View
18.
Diercks C, Yaghi O
. The atom, the molecule, and the covalent organic framework. Science. 2017; 355(6328).
DOI: 10.1126/science.aal1585.
View
19.
Varghese O, Paulose M, LaTempa T, Grimes C
. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009; 9(2):731-7.
DOI: 10.1021/nl803258p.
View
20.
Wu Y, Jiang Z, Lu X, Liang Y, Wang H
. Domino electroreduction of CO to methanol on a molecular catalyst. Nature. 2019; 575(7784):639-642.
DOI: 10.1038/s41586-019-1760-8.
View