6.
Severi K, Bohm U, Wyart C
. Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing. Sci Rep. 2018; 8(1):13615.
PMC: 6134141.
DOI: 10.1038/s41598-018-31968-4.
View
7.
Sheeran W, Ahmed O
. The neural circuitry supporting successful spatial navigation despite variable movement speeds. Neurosci Biobehav Rev. 2019; 108:821-833.
PMC: 10202407.
DOI: 10.1016/j.neubiorev.2019.11.013.
View
8.
Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S
. Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods. 2013; 10(9):889-95.
DOI: 10.1038/nmeth.2559.
View
9.
Kalivas P
. Histamine-induced arousal in the conscious and pentobarbital-pretreated rat. J Pharmacol Exp Ther. 1982; 222(1):37-42.
View
10.
Socha R, Kodrik D, Zemek R
. Stimulatory effects of bioamines norepinephrine and dopamine on locomotion of Pyrrhocoris apterus (L.): is the adipokinetic hormone involved?. Comp Biochem Physiol B Biochem Mol Biol. 2008; 151(3):305-10.
DOI: 10.1016/j.cbpb.2008.07.014.
View
11.
Cheng H, Lou Q, Lai N, Chen L, Zhang S, Fei F
. Projection-defined median raphe Pet subpopulations are diversely implicated in seizure. Neurobiol Dis. 2023; 189:106358.
DOI: 10.1016/j.nbd.2023.106358.
View
12.
Martinez-Gopar P, Perez-Rodriguez M, Rodriguez-Manzo G, Garduno-Gutierrez R, Tristan-Lopez L, Angeles-Lopez Q
. Mast cells and histamine are involved in the neuronal damage observed in a quinolinic acid-induced model of Huntington's disease. J Neurochem. 2021; 160(2):256-270.
DOI: 10.1111/jnc.15527.
View
13.
Sharma S, Badenhorst C, Ashby D, Di Vito S, Tran M, Ghavasieh Z
. Inhibitory medial zona incerta pathway drives exploratory behavior by inhibiting glutamatergic cuneiform neurons. Nat Commun. 2024; 15(1):1160.
PMC: 10850156.
DOI: 10.1038/s41467-024-45288-x.
View
14.
Mao D, Molina L, Bonin V, McNaughton B
. Vision and Locomotion Combine to Drive Path Integration Sequences in Mouse Retrosplenial Cortex. Curr Biol. 2020; 30(9):1680-1688.e4.
DOI: 10.1016/j.cub.2020.02.070.
View
15.
Klaus A, da Silva J, Costa R
. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu Rev Neurosci. 2019; 42:459-483.
DOI: 10.1146/annurev-neuro-072116-031033.
View
16.
Kitanishi T, Umaba R, Mizuseki K
. Robust information routing by dorsal subiculum neurons. Sci Adv. 2021; 7(11).
PMC: 7946376.
DOI: 10.1126/sciadv.abf1913.
View
17.
Railo H, Kraufvelin N, Santalahti J, Laine T
. Rapid withdrawal from a threatening animal is movement-specific and mediated by reflex-like neural processing. Neuroimage. 2023; 283:120441.
DOI: 10.1016/j.neuroimage.2023.120441.
View
18.
Peng J, Qi Z, Yan Q, Fan X, Shen K, Huang H
. Ameliorating parkinsonian motor dysfunction by targeting histamine receptors in entopeduncular nucleus-thalamus circuitry. Proc Natl Acad Sci U S A. 2023; 120(17):e2216247120.
PMC: 10151461.
DOI: 10.1073/pnas.2216247120.
View
19.
Trimper J, Galloway C, Jones A, Mandi K, Manns J
. Gamma Oscillations in Rat Hippocampal Subregions Dentate Gyrus, CA3, CA1, and Subiculum Underlie Associative Memory Encoding. Cell Rep. 2017; 21(9):2419-2432.
PMC: 5728687.
DOI: 10.1016/j.celrep.2017.10.123.
View
20.
Santos N, Huston J, Brandao M
. Escape behavior under tonic inhibitory control of histamine H(2)-receptor mediated mechanisms in the midbrain tectum. Behav Brain Res. 2001; 124(2):167-75.
DOI: 10.1016/s0166-4328(01)00228-5.
View