6.
Pang Y, Zhu D, Zheng H, Shen J, Hu Y, Liu J
. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. BMC Infect Dis. 2017; 17(1):711.
PMC: 5674869.
DOI: 10.1186/s12879-017-2761-6.
View
7.
Ramirez-Busby S, Rodwell T, Fink L, Catanzaro D, Jackson R, Pettigrove M
. A Multinational Analysis of Mutations and Heterogeneity in PZase, RpsA, and PanD Associated with Pyrazinamide Resistance in M/XDR Mycobacterium tuberculosis. Sci Rep. 2017; 7(1):3790.
PMC: 5476565.
DOI: 10.1038/s41598-017-03452-y.
View
8.
Stoffels K, Mathys V, Fauville-Dufaux M, Wintjens R, Bifani P
. Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012; 56(10):5186-93.
PMC: 3457413.
DOI: 10.1128/AAC.05385-11.
View
9.
Moore D, Evans C, Gilman R, Caviedes L, Coronel J, Vivar A
. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med. 2006; 355(15):1539-50.
PMC: 1780278.
DOI: 10.1056/NEJMoa055524.
View
10.
Ueno H, Urazono H, Kobayashi T
. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions. Food Chem. 2013; 145:90-4.
DOI: 10.1016/j.foodchem.2013.07.143.
View
11.
Owusu E, Newman M
. Microscopic Observation Drug Susceptibility (MODS) Assay: A Convenient Method for Determining Antibiogram of Clinical Isolates of in Ghana. Med Sci (Basel). 2020; 8(1).
PMC: 7151611.
DOI: 10.3390/medsci8010005.
View
12.
Calderon R, Velasquez G, Becerra M, Zhang Z, Contreras C, Yataco R
. Prevalence of pyrazinamide resistance and Wayne assay performance analysis in a tuberculosis cohort in Lima, Peru. Int J Tuberc Lung Dis. 2017; 21(8):894-901.
PMC: 5555119.
DOI: 10.5588/ijtld.16.0850.
View
13.
Mok S, Roycroft E, Flanagan P, Montgomery L, Borroni E, Rogers T
. Overcoming the Challenges of Pyrazinamide Susceptibility Testing in Clinical Mycobacterium tuberculosis Isolates. Antimicrob Agents Chemother. 2021; 65(8):e0261720.
PMC: 8284449.
DOI: 10.1128/AAC.02617-20.
View
14.
Modlin S, Marbach T, Werngren J, Mansjo M, Hoffner S, Valafar F
. Atypical Genetic Basis of Pyrazinamide Resistance in Monoresistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2021; 65(6).
PMC: 8315952.
DOI: 10.1128/AAC.01916-20.
View
15.
Catanzaro D, Trollip A, Seifert M, Georghiou S, Garfein R, Rodwell T
. Evaluation of the microscopic observation drug susceptibility assay for the detection of first- and second-line drug susceptibility for . Eur Respir J. 2017; 49(4).
PMC: 6141189.
DOI: 10.1183/13993003.02215-2016.
View
16.
Sheen P, Requena D, Gushiken E, Gilman R, Antiparra R, Lucero B
. A multiple genome analysis of Mycobacterium tuberculosis reveals specific novel genes and mutations associated with pyrazinamide resistance. BMC Genomics. 2017; 18(1):769.
PMC: 5637355.
DOI: 10.1186/s12864-017-4146-z.
View
17.
Chedore P, Bertucci L, Wolfe J, Sharma M, Jamieson F
. Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol. 2009; 48(1):300-1.
PMC: 2812260.
DOI: 10.1128/JCM.01775-09.
View
18.
Sheen P, Lozano K, Gilman R, Valencia H, Loli S, Fuentes P
. pncA gene expression and prediction factors on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb). 2013; 93(5):515-22.
PMC: 3755357.
DOI: 10.1016/j.tube.2013.03.005.
View
19.
Meinzen C, Proano A, Gilman R, Caviedes L, Coronel J, Zimic M
. A quantitative adaptation of the Wayne test for pyrazinamide resistance. Tuberculosis (Edinb). 2016; 99:41-46.
DOI: 10.1016/j.tube.2016.03.011.
View
20.
Ei P, Mon A, Htwe M, Win S, Aye K, San L
. Pyrazinamide resistance and pncA mutations in drug resistant Mycobacterium tuberculosis clinical isolates from Myanmar. Tuberculosis (Edinb). 2020; 125:102013.
DOI: 10.1016/j.tube.2020.102013.
View