6.
Kumar M, Dharani S, Leong W, Boix P, Prabhakar R, Baikie T
. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater. 2014; 26(41):7122-7.
DOI: 10.1002/adma.201401991.
View
7.
Stoumpos C, Malliakas C, Kanatzidis M
. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem. 2013; 52(15):9019-38.
DOI: 10.1021/ic401215x.
View
8.
Liu C, Yang Y, Chen H, Xu J, Liu A, Bati A
. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science. 2023; 382(6672):810-815.
DOI: 10.1126/science.adk1633.
View
9.
Heo J, Kim J, Kim H, Moon S, Im S, Hong K
. Roles of SnX (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites toward Highly Efficient and Stable Lead-Free Perovskite Solar Cells. J Phys Chem Lett. 2018; 9(20):6024-6031.
DOI: 10.1021/acs.jpclett.8b02555.
View
10.
Dissanayake P, Yeom K, Sarkar B, Alessi D, Hou D, Rinklebe J
. Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environ Res. 2022; 219:115066.
DOI: 10.1016/j.envres.2022.115066.
View
11.
Kundar M, Bhandari S, Chung S, Cho K, Sharma S, Singh R
. Surface Passivation by Sulfur-Based 2D (TEA)PbI for Stable and Efficient Perovskite Solar Cells. ACS Omega. 2023; 8(14):12842-12852.
PMC: 10099414.
DOI: 10.1021/acsomega.2c08126.
View
12.
Kondratenko K, Guerin D, Wallart X, Lenfant S, Vuillaume D
. Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films. Nanoscale. 2022; 14(16):6075-6084.
DOI: 10.1039/d2nr00819j.
View
13.
Liu W, Hu S, Pascual J, Nakano K, Murdey R, Tajima K
. Tin Halide Perovskite Solar Cells with Open-Circuit Voltages Approaching the Shockley-Queisser Limit. ACS Appl Mater Interfaces. 2023; 15(27):32487-32495.
DOI: 10.1021/acsami.3c06538.
View
14.
Wang L, Miao Q, Wang D, Chen M, Bi H, Liu J
. 14.31 % Power Conversion Efficiency of Sn-Based Perovskite Solar Cells via Efficient Reduction of Sn. Angew Chem Int Ed Engl. 2023; 62(33):e202307228.
DOI: 10.1002/anie.202307228.
View
15.
Sanchez-Diaz J, Sanchez R, Masi S, Krecmarova M, Alvarez A, Barea E
. Tin perovskite solar cells with >1,300 h of operational stability in N through a synergistic chemical engineering approach. Joule. 2022; 6(4):861-883.
PMC: 9097823.
DOI: 10.1016/j.joule.2022.02.014.
View
16.
Li M, He Y, Feng X, Qu W, Wei W, Yang B
. Reductant Engineering in Stable and High-Quality Tin Perovskite Single Crystal Growth for Heterojunction X-Ray Detectors. Adv Mater. 2023; 35(48):e2307042.
DOI: 10.1002/adma.202307042.
View
17.
Kovalenko M, Protesescu L, Bodnarchuk M
. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science. 2017; 358(6364):745-750.
DOI: 10.1126/science.aam7093.
View
18.
Zarazua I, Han G, Boix P, Mhaisalkar S, Fabregat-Santiago F, Mora-Sero I
. Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. J Phys Chem Lett. 2016; 7(24):5105-5113.
DOI: 10.1021/acs.jpclett.6b02193.
View
19.
Huang Y, Jiang Y, Zou S, Zhang Z, Jin J, He R
. Substitution of Ethylammonium Halides Enabling Lead-Free Tin-Based Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Appl Mater Interfaces. 2023; 15(12):15775-15784.
DOI: 10.1021/acsami.3c00299.
View
20.
Ayaydah W, Raddad E, Hawash Z
. Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines (Basel). 2023; 14(4).
PMC: 10143209.
DOI: 10.3390/mi14040806.
View