6.
Jiang Z, Li J, Chen S, Guo Q, Jing Z, Huang B
. Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis. Sci Rep. 2020; 10(1):13675.
PMC: 7426962.
DOI: 10.1038/s41598-020-70659-x.
View
7.
Hatami E, Jaggi M, Chauhan S, Yallapu M
. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer. 2020; 1874(1):188381.
PMC: 7484097.
DOI: 10.1016/j.bbcan.2020.188381.
View
8.
Zhang Q, Zhang Y, Wang C, Tang H, Ma A, Gao P
. Gambogic acid exhibits promising anticancer activity by inhibiting the pentose phosphate pathway in lung cancer mouse model. Phytomedicine. 2024; 129:155657.
DOI: 10.1016/j.phymed.2024.155657.
View
9.
Islam S, Patel R, Bommareddy R, Khalid K, Acevedo-Duncan M
. The modulation of actin dynamics via atypical Protein Kinase-C activated Cofilin regulates metastasis of colorectal cancer cells. Cell Adh Migr. 2018; 13(1):106-120.
PMC: 6527392.
DOI: 10.1080/19336918.2018.1546513.
View
10.
Korangath P, Jin L, Yang C, Healy S, Guo X, Ke S
. Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer. ACS Nano. 2024; 18(15):10509-10526.
PMC: 11025112.
DOI: 10.1021/acsnano.3c12064.
View
11.
Li C, Wang Q, Wang X, Li G, Shen S, Wei X
. Gambogic acid exhibits anti-metastatic activity on malignant melanoma mainly through inhibition of PI3K/Akt and ERK signaling pathways. Eur J Pharmacol. 2019; 864:172719.
DOI: 10.1016/j.ejphar.2019.172719.
View
12.
Zhou H, Liu Z, Wang Y, Wen X, Amador E, Yuan L
. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther. 2022; 7(1):70.
PMC: 8897452.
DOI: 10.1038/s41392-022-00922-2.
View
13.
Fang L, Chen B, Liu S, Wang R, Hu S, Xia G
. Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells. Int J Nanomedicine. 2012; 7:4109-18.
PMC: 3415324.
DOI: 10.2147/IJN.S32475.
View
14.
Li M, Su F, Zhu M, Zhang H, Wei Y, Zhao Y
. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Molecules. 2022; 27(9).
PMC: 9102264.
DOI: 10.3390/molecules27092937.
View
15.
Li J, Xing X, Li D, Zhang B, Mutch D, Hagemann I
. Whole-Genome DNA Methylation Profiling Identifies Epigenetic Signatures of Uterine Carcinosarcoma. Neoplasia. 2017; 19(2):100-111.
PMC: 5237802.
DOI: 10.1016/j.neo.2016.12.009.
View
16.
Hight S, Mootz A, Kollipara R, McMillan E, Yenerall P, Otaki Y
. An in vivo functional genomics screen of nuclear receptors and their co-regulators identifies FOXA1 as an essential gene in lung tumorigenesis. Neoplasia. 2020; 22(8):294-310.
PMC: 7281309.
DOI: 10.1016/j.neo.2020.04.005.
View
17.
Favero A, Segatto I, Capuano A, Mattevi M, Rampioni Vinciguerra G, Musco L
. Loss of the extracellular matrix glycoprotein EMILIN1 accelerates Δ16HER2-driven breast cancer initiation in mice. NPJ Breast Cancer. 2024; 10(1):5.
PMC: 10771445.
DOI: 10.1038/s41523-023-00608-0.
View
18.
Kojetin D, Burris T
. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 2014; 13(3):197-216.
PMC: 4865262.
DOI: 10.1038/nrd4100.
View
19.
Wen C, Huang L, Chen J, Lin M, Li W, Lu B
. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells. Int J Oncol. 2015; 47(5):1663-71.
PMC: 4599191.
DOI: 10.3892/ijo.2015.3166.
View
20.
Andreuzzi E, Fejza A, Polano M, Poletto E, Camicia L, Carobolante G
. Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway. J Exp Clin Cancer Res. 2022; 41(1):60.
PMC: 8840294.
DOI: 10.1186/s13046-022-02271-y.
View