6.
Chandal N, Tambat R, Kalia R, Kumar G, Mahey N, Jachak S
. Efflux pump inhibitory potential of indole derivatives as an arsenal against over-expressing . Microbiol Spectr. 2023; :e0487622.
PMC: 10581058.
DOI: 10.1128/spectrum.04876-22.
View
7.
Elmesseri R, Saleh S, ElSherif H, Yahia I, Aboshanab K
. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti- Agents. Antibiotics (Basel). 2022; 11(3).
PMC: 8944557.
DOI: 10.3390/antibiotics11030298.
View
8.
Heikal A, Nakatani Y, Dunn E, Weimar M, Day C, Baker E
. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol. 2014; 91(5):950-64.
DOI: 10.1111/mmi.12507.
View
9.
Spry C, Kirk K, Saliba K
. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev. 2008; 32(1):56-106.
DOI: 10.1111/j.1574-6976.2007.00093.x.
View
10.
Matsumoto Y, Yasukawa J, Ishii M, Hayashi Y, Miyazaki S, Sekimizu K
. A critical role of mevalonate for peptidoglycan synthesis in Staphylococcus aureus. Sci Rep. 2016; 6:22894.
PMC: 4790635.
DOI: 10.1038/srep22894.
View
11.
Yuan W, Yu Z, Song W, Li Y, Fang Z, Zhu B
. Indole-core-based novel antibacterial agent targeting FtsZ. Infect Drug Resist. 2019; 12:2283-2296.
PMC: 6662167.
DOI: 10.2147/IDR.S208757.
View
12.
Wu M, Maier E, Benz R, Hancock R
. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999; 38(22):7235-42.
DOI: 10.1021/bi9826299.
View
13.
Ahmed M, Ibrahim M, Zhang J, Melek F, El-Hawary S, Jacob M
. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis and Enterococcus faecium active dimeric isobutyrylphloroglucinol from Ivesia gordonii. Nat Prod Commun. 2014; 9(2):221-4.
PMC: 4130393.
View
14.
Schurig-Briccio L, Parraga Solorzano P, Lencina A, Radin J, Chen G, Sauer J
. Role of respiratory NADH oxidation in the regulation of Staphylococcus aureus virulence. EMBO Rep. 2020; 21(5):e45832.
PMC: 7202225.
DOI: 10.15252/embr.201845832.
View
15.
Leejae S, Hasap L, Voravuthikunchai S
. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol. 2012; 62(Pt 3):421-428.
DOI: 10.1099/jmm.0.047316-0.
View
16.
Leonardi R, Chohnan S, Zhang Y, Virga K, Lee R, Rock C
. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J Biol Chem. 2004; 280(5):3314-22.
DOI: 10.1074/jbc.M411608200.
View
17.
Bogdanovich T, Ednie L, Shapiro S, Appelbaum P
. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother. 2005; 49(10):4210-9.
PMC: 1251547.
DOI: 10.1128/AAC.49.10.4210-4219.2005.
View
18.
Saini M, Gaurav A, Kothari A, Omar B, Gupta V, Bhattacharjee A
. Small Molecule IITR00693 (2-Aminoperimidine) Synergizes Polymyxin B Activity against and . ACS Infect Dis. 2023; 9(3):692-705.
DOI: 10.1021/acsinfecdis.2c00622.
View
19.
Petri J, Shimaki Y, Jiao W, Bridges H, Russell E, Parker E
. Structure of the NDH-2 - HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Biochim Biophys Acta Bioenerg. 2018; 1859(7):482-490.
PMC: 6167311.
DOI: 10.1016/j.bbabio.2018.03.014.
View
20.
Kaplan N, Albert M, Awrey D, Bardouniotis E, Berman J, Clarke T
. Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor. Antimicrob Agents Chemother. 2012; 56(11):5865-74.
PMC: 3486558.
DOI: 10.1128/AAC.01411-12.
View