6.
Schrodi S, Mukherjee S, Shan Y, Tromp G, Sninsky J, Callear A
. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future. Front Genet. 2014; 5:162.
PMC: 4040440.
DOI: 10.3389/fgene.2014.00162.
View
7.
Kong R, Xu X, Liu X, He P, Zhang M, Dai Q
. 2SigFinder: the combined use of small-scale and large-scale statistical testing for genomic island detection from a single genome. BMC Bioinformatics. 2020; 21(1):159.
PMC: 7191778.
DOI: 10.1186/s12859-020-3501-2.
View
8.
Bhosale Y, Patnaik K
. Bio-medical imaging (X-ray, CT, ultrasound, ECG), genome sequences applications of deep neural network and machine learning in diagnosis, detection, classification, and segmentation of COVID-19: a Meta-analysis & systematic review. Multimed Tools Appl. 2023; :1-54.
PMC: 10015538.
DOI: 10.1007/s11042-023-15029-1.
View
9.
Cao C, Liu F, Tan H, Song D, Shu W, Li W
. Deep Learning and Its Applications in Biomedicine. Genomics Proteomics Bioinformatics. 2018; 16(1):17-32.
PMC: 6000200.
DOI: 10.1016/j.gpb.2017.07.003.
View
10.
Alatrany A, Khan W, Hussain A, Al-Jumeily D
. Wide and deep learning based approaches for classification of Alzheimer's disease using genome-wide association studies. PLoS One. 2023; 18(5):e0283712.
PMC: 10150974.
DOI: 10.1371/journal.pone.0283712.
View
11.
Huang K, Xiao C, Glass L, Critchlow C, Gibson G, Sun J
. Machine learning applications for therapeutic tasks with genomics data. Patterns (N Y). 2021; 2(10):100328.
PMC: 8515011.
DOI: 10.1016/j.patter.2021.100328.
View
12.
Alharbi W, Rashid M
. A review of deep learning applications in human genomics using next-generation sequencing data. Hum Genomics. 2022; 16(1):26.
PMC: 9317091.
DOI: 10.1186/s40246-022-00396-x.
View
13.
Sherr C, Roberts J
. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995; 9(10):1149-63.
DOI: 10.1101/gad.9.10.1149.
View
14.
Phatak A, Wieland F, Vempala K, Volkmar F, Memmert D
. Artificial Intelligence Based Body Sensor Network Framework-Narrative Review: Proposing an End-to-End Framework using Wearable Sensors, Real-Time Location Systems and Artificial Intelligence/Machine Learning Algorithms for Data Collection, Data.... Sports Med Open. 2021; 7(1):79.
PMC: 8556803.
DOI: 10.1186/s40798-021-00372-0.
View
15.
Atta-Ur Rahman , Nasir M, Gollapalli M, Alsaif S, Almadhor A, Mehmood S
. IoMT-Based Mitochondrial and Multifactorial Genetic Inheritance Disorder Prediction Using Machine Learning. Comput Intell Neurosci. 2022; 2022:2650742.
PMC: 9334098.
DOI: 10.1155/2022/2650742.
View
16.
Aiassa S, Motto Ros P, Hanitra M, Tunzi D, Martina M, Carrara S
. Smart Portable Pen for Continuous Monitoring of Anaesthetics in Human Serum With Machine Learning. IEEE Trans Biomed Circuits Syst. 2021; 15(2):294-302.
DOI: 10.1109/TBCAS.2021.3067388.
View
17.
Ajmal S, Awais M, Khurshid K, Shoaib M, Abdelrahman A
. Data mining-based recommendation system using social networks-an analytical study. PeerJ Comput Sci. 2023; 9:e1202.
PMC: 10280279.
DOI: 10.7717/peerj-cs.1202.
View
18.
Wang Y, Xu Y, Yang Z, Liu X, Dai Q
. Using Recursive Feature Selection with Random Forest to Improve Protein Structural Class Prediction for Low-Similarity Sequences. Comput Math Methods Med. 2021; 2021:5529389.
PMC: 8123985.
DOI: 10.1155/2021/5529389.
View
19.
Yang S, Wang Y, Chen Y, Dai Q
. MASQC: Next Generation Sequencing Assists Third Generation Sequencing for Quality Control in N6-Methyladenine DNA Identification. Front Genet. 2020; 11:269.
PMC: 7109398.
DOI: 10.3389/fgene.2020.00269.
View
20.
Ghazal T, Hamadi H, Nasir M, Atta-Ur-Rahman , Gollapalli M, Zubair M
. Supervised Machine Learning Empowered Multifactorial Genetic Inheritance Disorder Prediction. Comput Intell Neurosci. 2022; 2022:1051388.
PMC: 9173933.
DOI: 10.1155/2022/1051388.
View