6.
Tennoe S, Halnes G, Einevoll G
. Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience. Front Neuroinform. 2018; 12:49.
PMC: 6102374.
DOI: 10.3389/fninf.2018.00049.
View
7.
Yang B, OConnell G
. Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: A finite element analysis of healthy and degenerated discs. Acta Biomater. 2019; 100:61-74.
DOI: 10.1016/j.actbio.2019.09.035.
View
8.
Athanasiou K, Agarwal A, Muffoletto A, Dzida F, CONSTANTINIDES G, CLEM M
. Biomechanical properties of hip cartilage in experimental animal models. Clin Orthop Relat Res. 1995; (316):254-66.
View
9.
Newman H, DeLucca J, Peloquin J, Vresilovic E, Elliott D
. Multiaxial validation of a finite element model of the intervertebral disc with multigenerational fibers to establish residual strain. JOR Spine. 2021; 4(2):e1145.
PMC: 8313175.
DOI: 10.1002/jsp2.1145.
View
10.
Eskandari M, Nordgren T, OConnell G
. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology. Acta Biomater. 2019; 97:513-523.
PMC: 7462120.
DOI: 10.1016/j.actbio.2019.07.020.
View
11.
Gu W, Yao H, Huang C, Cheung H
. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech. 2003; 36(4):593-8.
DOI: 10.1016/s0021-9290(02)00437-2.
View
12.
Narayan A, Liu Z, Bergquist J, Charlebois C, Rampersad S, Rupp L
. UncertainSCI: Uncertainty quantification for computational models in biomedicine and bioengineering. Comput Biol Med. 2022; 152:106407.
PMC: 9812870.
DOI: 10.1016/j.compbiomed.2022.106407.
View
13.
Patel J, Wise B, Bonnevie E, Mauck R
. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Tissue Eng Part C Methods. 2019; 25(10):593-608.
PMC: 6791482.
DOI: 10.1089/ten.TEC.2019.0116.
View
14.
Cortes D, Jacobs N, DeLucca J, Elliott D
. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. J Biomech. 2014; 47(9):2088-94.
PMC: 4047194.
DOI: 10.1016/j.jbiomech.2013.12.021.
View
15.
Cortes D, Han W, Smith L, Elliott D
. Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent. J Orthop Res. 2013; 31(11):1725-32.
PMC: 4164199.
DOI: 10.1002/jor.22430.
View
16.
Lai W, Mow V
. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 1980; 17(1-2):111-23.
DOI: 10.3233/bir-1980-171-213.
View
17.
Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, Sethna J
. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007; 3(10):1871-78.
PMC: 2000971.
DOI: 10.1371/journal.pcbi.0030189.
View
18.
Zhou M, Werbner B, OConnell G
. Historical Review of Combined Experimental and Computational Approaches for Investigating Annulus Fibrosus Mechanics. J Biomech Eng. 2020; 142(3).
DOI: 10.1115/1.4046186.
View
19.
Jacobs N, Cortes D, Peloquin J, Vresilovic E, Elliott D
. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. J Biomech. 2014; 47(11):2540-6.
PMC: 4366133.
DOI: 10.1016/j.jbiomech.2014.06.008.
View
20.
Romgens A, van Donkelaar C, Ito K
. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues. Biomech Model Mechanobiol. 2013; 12(6):1221-31.
DOI: 10.1007/s10237-013-0477-0.
View