6.
Zheng W, Li W, Peng Y, Shao Y, Tang L, Liu C
. E2Fs co-participate in cadmium stress response through activation of MSHs during the cell cycle. Front Plant Sci. 2022; 13:1068769.
PMC: 9749859.
DOI: 10.3389/fpls.2022.1068769.
View
7.
Liu J, Xie Y, Wang F, Zhang L, Zhang Y, Luo H
. Cytotoxicity of 5-Aza-2'-deoxycytidine against gastric cancer involves DNA damage in an ATM-P53 dependent signaling pathway and demethylation of P16(INK4A). Biomed Pharmacother. 2012; 67(1):78-87.
DOI: 10.1016/j.biopha.2012.10.015.
View
8.
Ausin I, Feng S, Yu C, Liu W, Kuo H, Jacobsen E
. DNA methylome of the 20-gigabase Norway spruce genome. Proc Natl Acad Sci U S A. 2016; 113(50):E8106-E8113.
PMC: 5167160.
DOI: 10.1073/pnas.1618019113.
View
9.
Cui Y, Gao Y, Zhao R, Zhao J, Li Y, Qi S
. Transcriptomic, Metabolomic, and Physiological Analyses Reveal That the Culture Temperatures Modulate the Cryotolerance and Embryogenicity of Developing Somatic Embryos in . Front Plant Sci. 2021; 12:694229.
PMC: 8440983.
DOI: 10.3389/fpls.2021.694229.
View
10.
Chakraborty T, Kendall T, Grover J, Mosher R
. Embryo CHH hypermethylation is mediated by RdDM and is autonomously directed in Brassica rapa. Genome Biol. 2021; 22(1):140.
PMC: 8101221.
DOI: 10.1186/s13059-021-02358-3.
View
11.
Mendez-Hernandez H, Ledezma-Rodriguez M, Avilez-Montalvo R, Juarez-Gomez Y, Skeete A, Avilez-Montalvo J
. Signaling Overview of Plant Somatic Embryogenesis. Front Plant Sci. 2019; 10:77.
PMC: 6375091.
DOI: 10.3389/fpls.2019.00077.
View
12.
Nic-Can G, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas V, Rojas-Herrera R
. New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One. 2013; 8(8):e72160.
PMC: 3748027.
DOI: 10.1371/journal.pone.0072160.
View
13.
Chakrabarti M, Mukherjee A
. Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicol Environ Saf. 2020; 209:111817.
DOI: 10.1016/j.ecoenv.2020.111817.
View
14.
Yamaguchi N
. Removal of H3K27me3 by JMJ Proteins Controls Plant Development and Environmental Responses in . Front Plant Sci. 2021; 12:687416.
PMC: 8248668.
DOI: 10.3389/fpls.2021.687416.
View
15.
Yamada M, Tanaka S, Miyazaki T, Aida M
. Expression of the auxin biosynthetic genes and is dependent on the boundary regulators genes in the embryo. Plant Biotechnol (Tokyo). 2022; 39(1):37-42.
PMC: 9200086.
DOI: 10.5511/plantbiotechnology.21.0924a.
View
16.
Chen X, Xu X, Shen X, Li H, Zhu C, Chen R
. Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour. Tree Physiol. 2020; 40(12):1807-1826.
DOI: 10.1093/treephys/tpaa097.
View
17.
Nystedt B, Street N, Wetterbom A, Zuccolo A, Lin Y, Scofield D
. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013; 497(7451):579-84.
DOI: 10.1038/nature12211.
View
18.
Wang Q, Liu S, Lu C, La Y, Dai J, Ma H
. Roles of CRWN-family proteins in protecting genomic DNA against oxidative damage. J Plant Physiol. 2018; 233:20-30.
DOI: 10.1016/j.jplph.2018.12.005.
View
19.
Zhu T, Moschou P, Alvarez J, Sohlberg J, VON Arnold S
. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biol. 2016; 16:19.
PMC: 4719685.
DOI: 10.1186/s12870-016-0706-7.
View
20.
Litvay J, Verma D, Johnson M
. Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 2013; 4(6):325-8.
DOI: 10.1007/BF00269890.
View