Collagen-Based Nanoparticles As Drug Delivery System in Wound Healing Applications
Overview
Authors
Affiliations
Background: Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes.
Aims Of Study: This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing.
Methodology: This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed.
Results: A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade.
Conclusion: In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.
Almuqbil R, Aldhubiab B Pharmaceutics. 2025; 17(2).
PMID: 40006596 PMC: 11860006. DOI: 10.3390/pharmaceutics17020229.