6.
Ishikawa K, Putri T, Tsuchiya A, Tanaka K, Tsuru K
. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO followed by heat treatment. J Biomed Mater Res A. 2017; 106(3):797-804.
DOI: 10.1002/jbm.a.36285.
View
7.
Chaudhry A, Knowles J, Rehman I, Darr J
. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates. J Biomater Appl. 2012; 28(3):448-61.
PMC: 4112750.
DOI: 10.1177/0885328212460289.
View
8.
Dorozhkin S
. Bioceramics of calcium orthophosphates. Biomaterials. 2009; 31(7):1465-85.
DOI: 10.1016/j.biomaterials.2009.11.050.
View
9.
Chen S, Lei M, Xie X, Zheng L, Yao D, Wang X
. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits. Acta Biomater. 2013; 9(5):6711-22.
DOI: 10.1016/j.actbio.2013.01.024.
View
10.
Hossain M, Ali Shaikh M, Uddin M, Bashar M, Ahmed S
. β-tricalcium phosphate synthesized in organic medium for controlled release drug delivery application in bio-scaffolds. RSC Adv. 2023; 13(38):26435-26444.
PMC: 10477827.
DOI: 10.1039/d3ra04904c.
View
11.
Whitaker R, Hernaez-Estrada B, Hernandez R, Santos-Vizcaino E, Spiller K
. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev. 2021; 121(18):11305-11335.
DOI: 10.1021/acs.chemrev.0c00895.
View
12.
Lei Q, Lin D, Huang W, Wu D, Chen J
. [Effects of calcium ion on the migration and osteogenic differentiation of human osteoblasts]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2018; 36(6):602-608.
PMC: 7039784.
DOI: 10.7518/hxkq.2018.06.004.
View
13.
Trento G, Hassumi J, Frigerio P, Bassi A, Okamoto R, Gabrielli M
. Gene expression, immunohistochemical and microarchitectural evaluation of bone formation around two implant surfaces placed in bone defects filled or not with bone substitute material. Int J Implant Dent. 2020; 6(1):80.
PMC: 7704835.
DOI: 10.1186/s40729-020-00279-7.
View
14.
Al Mugeiren O, Baseer M
. Dental Implant Bioactive Surface Modifiers: An Update. J Int Soc Prev Community Dent. 2019; 9(1):1-4.
PMC: 6402260.
DOI: 10.4103/jispcd.JISPCD_303_18.
View
15.
Khajehmohammadi M, Azizi Tafti R, Nikukar H
. Effect of porosity on mechanical and biological properties of bioprinted scaffolds. J Biomed Mater Res A. 2022; 111(2):245-260.
DOI: 10.1002/jbm.a.37455.
View
16.
Nyan M, Miyahara T, Noritake K, Hao J, Rodriguez R, Kasugai S
. Feasibility of alpha tricalcium phosphate for vertical bone augmentation. J Investig Clin Dent. 2012; 5(2):109-16.
DOI: 10.1111/jicd.12022.
View
17.
Zaszczynska A, Niemczyk-Soczynska B, Sajkiewicz P
. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel). 2022; 14(23).
PMC: 9736375.
DOI: 10.3390/polym14235278.
View
18.
Lu T, Feng S, He F, Ye J
. Enhanced osteogenesis of honeycomb β-tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study. J Biomed Mater Res A. 2019; 108(3):645-653.
DOI: 10.1002/jbm.a.36844.
View
19.
Bonazza V, Hajistilly C, Patel D, Patel J, Woo R, Cocchi M
. Growth Factors Release From Concentrated Growth Factors: Effect of β-Tricalcium Phosphate Addition. J Craniofac Surg. 2018; 29(8):2291-2295.
DOI: 10.1097/SCS.0000000000004607.
View
20.
Wang W, Yeung K
. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2018; 2(4):224-247.
PMC: 5935655.
DOI: 10.1016/j.bioactmat.2017.05.007.
View