6.
Li Y, Wei D, Liu X, Fan X, Wang K, Li S
. Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning. Eur Radiol. 2021; 32(2):747-758.
DOI: 10.1007/s00330-021-08237-6.
View
7.
Menze B, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J
. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging. 2014; 34(10):1993-2024.
PMC: 4833122.
DOI: 10.1109/TMI.2014.2377694.
View
8.
Ostrom Q, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C
. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019; 21(Suppl 5):v1-v100.
PMC: 6823730.
DOI: 10.1093/neuonc/noz150.
View
9.
Whitfield B, Huse J
. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol. 2022; 32(4):e13062.
PMC: 9245936.
DOI: 10.1111/bpa.13062.
View
10.
Herlidou-Meme S, Constans J, Carsin B, Olivie D, Eliat P, Nadal-Desbarats L
. MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging. 2003; 21(9):989-93.
DOI: 10.1016/s0730-725x(03)00212-1.
View
11.
Louis D, Perry A, Wesseling P, Brat D, Cree I, Figarella-Branger D
. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8):1231-1251.
PMC: 8328013.
DOI: 10.1093/neuonc/noab106.
View
12.
Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y
. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2018; 16(1):67-70.
DOI: 10.1038/s41592-018-0261-2.
View
13.
Wang W, Zhao Y, Teng L, Yan J, Guo Y, Qiu Y
. Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images. Nat Commun. 2023; 14(1):6359.
PMC: 10567721.
DOI: 10.1038/s41467-023-41195-9.
View
14.
Bi W, Hosny A, Schabath M, Giger M, Birkbak N, Mehrtash A
. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019; 69(2):127-157.
PMC: 6403009.
DOI: 10.3322/caac.21552.
View
15.
Schad L, Bluml S, Zuna I
. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging. 1993; 11(6):889-96.
DOI: 10.1016/0730-725x(93)90206-s.
View
16.
Kickingereder P, Gotz M, Muschelli J, Wick A, Neuberger U, Shinohara R
. Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response. Clin Cancer Res. 2016; 22(23):5765-5771.
PMC: 5503450.
DOI: 10.1158/1078-0432.CCR-16-0702.
View
17.
Van der Voort S, Incekara F, Wijnenga M, Kapsas G, Gahrmann R, Schouten J
. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro Oncol. 2022; 25(2):279-289.
PMC: 9925710.
DOI: 10.1093/neuonc/noac166.
View
18.
Li S, Luo T, Ding C, Huang Q, Guan Z, Zhang H
. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: Combining radiomics with machine learning. Med Phys. 2020; 47(8):3458-3466.
DOI: 10.1002/mp.14238.
View
19.
Decuyper M, Bonte S, Deblaere K, Van Holen R
. Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma. Comput Med Imaging Graph. 2021; 88:101831.
DOI: 10.1016/j.compmedimag.2020.101831.
View
20.
Eckel-Passow J, Lachance D, Molinaro A, Walsh K, Decker P, Sicotte H
. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015; 372(26):2499-508.
PMC: 4489704.
DOI: 10.1056/NEJMoa1407279.
View