Joint Suppression of Cardiac BSSFP Cine Banding and Flow Artifacts Using Twofold Phase-cycling and a Dual-encoder Neural Network
Overview
Radiology
Authors
Affiliations
Background: Cardiac balanced steady state free precession (bSSFP) cine imaging suffers from banding and flow artifacts induced by off-resonance. The work aimed to develop a twofold phase cycling sequence with a neural network-based reconstruction (2P-SSFP+Network) for a joint suppression of banding and flow artifacts in cardiac cine imaging.
Methods: A dual-encoder neural network was trained on 1620 pairs of phase-cycled left ventricular (LV) cine images collected from 18 healthy subjects. Twenty healthy subjects and 25 patients were prospectively scanned using the proposed 2P-SSFP sequence. bSSFP cine of a single RF phase increment (1P-SSFP), bSSFP cine of a single radiofrequency (RF) phase increment with a network-based artifact reduction (1P-SSFP+Network), the averaging of the two phase-cycled images (2P-SSFP+Average), and the proposed method were mutually compared, in terms of artifact suppression performance in the LV, generalizability over altered scan parameters and scanners, suppression of large-area banding artifacts in the left atrium (LA), and accuracy of downstream segmentation tasks.
Results: In the healthy subjects, 2P-SSFP+Network showed robust suppressions of artifacts across a range of phase combinations. Compared with 1P-SSFP and 2P-SSFP+Average, 2P-SSFP+Network improved banding artifacts (3.85 ± 0.67 and 4.50 ± 0.45 vs 5.00 ± 0.00, P < 0.01 and P = 0.02, respectively), flow artifacts (3.35 ± 0.78 and 2.10 ± 0.77 vs 4.90 ± 0.20, both P < 0.01), and overall image quality (3.25 ± 0.51 and 2.30 ± 0.60 vs 4.75 ± 0.25, both P < 0.01). 1P-SSFP+Network and 2P-SSFP+Network achieved a similar artifact suppression performance, yet the latter had fewer hallucinations (two-chamber, 4.25 ± 0.51 vs 4.85 ± 0.45, P = 0.04; four-chamber, 3.45 ± 1.21 vs 4.65 ± 0.50, P = 0.03; and left atrium (LA), 3.35 ± 1.00 vs 4.65 ± 0.45, P < 0.01). Furthermore, in the pulmonary veins and LA, 1P-SSFP+Network could not eliminate banding artifacts since they occupied a large area, whereas 2P-SSFP+Network reliably suppressed the artifacts. In the downstream automated myocardial segmentation task, 2P-SSFP+Network achieved more accurate segmentations than 1P-SSFP with different phase increments.
Conclusions: 2P-SSFP+Network jointly suppresses banding and flow artifacts while manifesting a good generalizability against variations of anatomy and scan parameters. It provides a feasible solution for robust suppression of the two types of artifacts in bSSFP cine imaging.