6.
Kenzie E, Parks E, Bigler E, Wright D, Lim M, Chesnutt J
. The Dynamics of Concussion: Mapping Pathophysiology, Persistence, and Recovery With Causal-Loop Diagramming. Front Neurol. 2018; 9:203.
PMC: 5893805.
DOI: 10.3389/fneur.2018.00203.
View
7.
Grabiner P, Biswas S, Grabiner M
. Age-related changes in spatial and temporal gait variables. Arch Phys Med Rehabil. 2001; 82(1):31-5.
DOI: 10.1053/apmr.2001.18219.
View
8.
Giza C, Hovda D
. The Neurometabolic Cascade of Concussion. J Athl Train. 2003; 36(3):228-235.
PMC: 155411.
View
9.
Rhea C, Yamada M, Kuznetsov N, Jakiela J, LoJacono C, Ross S
. Neuromotor changes in participants with a concussion history can be detected with a custom smartphone app. PLoS One. 2022; 17(12):e0278994.
PMC: 9754195.
DOI: 10.1371/journal.pone.0278994.
View
10.
Mainwaring L, Ferdinand Pennock K, Mylabathula S, Alavie B
. Subconcussive head impacts in sport: A systematic review of the evidence. Int J Psychophysiol. 2018; 132(Pt A):39-54.
DOI: 10.1016/j.ijpsycho.2018.01.007.
View
11.
Hrysomallis C, McLaughlin P, Goodman C
. Relationship between static and dynamic balance tests among elite Australian Footballers. J Sci Med Sport. 2006; 9(4):288-91.
DOI: 10.1016/j.jsams.2006.05.021.
View
12.
Rhea C, Diekfuss J, Fairbrother J, Raisbeck L
. Postural Control Entropy Is Increased When Adopting an External Focus of Attention. Motor Control. 2018; 23(2):230-242.
DOI: 10.1123/mc.2017-0089.
View
13.
Carr W, Yarnell A, Ong R, Walilko T, Kamimori G, da Silva U
. Ubiquitin carboxy-terminal hydrolase-l1 as a serum neurotrauma biomarker for exposure to occupational low-level blast. Front Neurol. 2015; 6:49.
PMC: 4360700.
DOI: 10.3389/fneur.2015.00049.
View
14.
Lipsitz L, Goldberger A
. Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992; 267(13):1806-9.
View
15.
Manor B, Costa M, Hu K, Newton E, Starobinets O, Kang H
. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol (1985). 2010; 109(6):1786-91.
PMC: 3006415.
DOI: 10.1152/japplphysiol.00390.2010.
View
16.
Haran F, Handy J, Servatius R, Rhea C, Tsao J
. Acute neurocognitive deficits in active duty service members following subconcussive blast exposure. Appl Neuropsychol Adult. 2019; 28(3):297-309.
DOI: 10.1080/23279095.2019.1630627.
View
17.
Guskiewicz K, Riemann B, Perrin D, Nashner L
. Alternative approaches to the assessment of mild head injury in athletes. Med Sci Sports Exerc. 1997; 29(7 Suppl):S213-21.
DOI: 10.1097/00005768-199707001-00003.
View
18.
Carr W, Polejaeva E, Grome A, Crandall B, LaValle C, Eonta S
. Relation of repeated low-level blast exposure with symptomology similar to concussion. J Head Trauma Rehabil. 2014; 30(1):47-55.
DOI: 10.1097/HTR.0000000000000064.
View
19.
Tate C, Wang K, Eonta S, Zhang Y, Carr W, Tortella F
. Serum brain biomarker level, neurocognitive performance, and self-reported symptom changes in soldiers repeatedly exposed to low-level blast: a breacher pilot study. J Neurotrauma. 2013; 30(19):1620-30.
DOI: 10.1089/neu.2012.2683.
View
20.
Dever A, Powell D, Graham L, Mason R, Das J, Marshall S
. Gait Impairment in Traumatic Brain Injury: A Systematic Review. Sensors (Basel). 2022; 22(4).
PMC: 8875145.
DOI: 10.3390/s22041480.
View