6.
Gautam P, Hamashima K, Chen Y, Zeng Y, Makovoz B, Parikh B
. Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nat Commun. 2021; 12(1):5675.
PMC: 8478974.
DOI: 10.1038/s41467-021-25968-8.
View
7.
Humphreys B, Lin S, Kobayashi A, Hudson T, Nowlin B, Bonventre J
. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2009; 176(1):85-97.
PMC: 2797872.
DOI: 10.2353/ajpath.2010.090517.
View
8.
Clark B, Stein-OBrien G, Shiau F, Cannon G, Davis-Marcisak E, Sherman T
. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron. 2019; 102(6):1111-1126.e5.
PMC: 6768831.
DOI: 10.1016/j.neuron.2019.04.010.
View
9.
Fadl B, Brodie S, Malasky M, Boland J, Kelly M, Kelley M
. An optimized protocol for retina single-cell RNA sequencing. Mol Vis. 2020; 26:705-717.
PMC: 7553720.
View
10.
Lukowski S, Lo C, Sharov A, Nguyen Q, Fang L, Hung S
. A single-cell transcriptome atlas of the adult human retina. EMBO J. 2019; 38(18):e100811.
PMC: 6745503.
DOI: 10.15252/embj.2018100811.
View
11.
Norden P, Sabine A, Wang Y, Saygili Demir C, Liu T, Petrova T
. Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation. Elife. 2020; 9.
PMC: 7302880.
DOI: 10.7554/eLife.53814.
View
12.
Sun L, Wang R, Hu G, Liu H, Lv K, Duan Y
. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp Eye Res. 2021; 210:108718.
DOI: 10.1016/j.exer.2021.108718.
View
13.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M
. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214.
PMC: 4481139.
DOI: 10.1016/j.cell.2015.05.002.
View
14.
Lyu P, Hoang T, Santiago C, Thomas E, Timms A, Appel H
. Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep. 2021; 37(7):109994.
PMC: 8642835.
DOI: 10.1016/j.celrep.2021.109994.
View
15.
Liao D, Fan W, Li N, Li R, Wang X, Liu J
. A single cell atlas of circulating immune cells involved in diabetic retinopathy. iScience. 2024; 27(2):109003.
PMC: 10847734.
DOI: 10.1016/j.isci.2024.109003.
View
16.
Antonetti D, Silva P, Stitt A
. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 2021; 17(4):195-206.
PMC: 9053333.
DOI: 10.1038/s41574-020-00451-4.
View
17.
Hu Z, Mao X, Chen M, Wu X, Zhu T, Liu Y
. Single-Cell Transcriptomics Reveals Novel Role of Microglia in Fibrovascular Membrane of Proliferative Diabetic Retinopathy. Diabetes. 2022; 71(4):762-773.
DOI: 10.2337/db21-0551.
View
18.
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes J
. Comprehensive single-cell atlas of the mouse retina. iScience. 2024; 27(6):109916.
PMC: 11134544.
DOI: 10.1016/j.isci.2024.109916.
View
19.
Svensson V, Natarajan K, Ly L, Miragaia R, Labalette C, Macaulay I
. Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017; 14(4):381-387.
PMC: 5376499.
DOI: 10.1038/nmeth.4220.
View
20.
Kumari A, Ayala-Ramirez R, Zenteno J, Huffman K, Sasik R, Ayyagari R
. Single cell RNA sequencing confirms retinal microglia activation associated with early onset retinal degeneration. Sci Rep. 2022; 12(1):15273.
PMC: 9464204.
DOI: 10.1038/s41598-022-19351-w.
View