6.
Li T, Yu X, Li M, Rong L, Xiao X, Zou X
. Ecological insight into antibiotic resistome of ion-adsorption rare earth mining soils from south China by metagenomic analysis. Sci Total Environ. 2023; 872:162265.
DOI: 10.1016/j.scitotenv.2023.162265.
View
7.
Wei J, Liu S, Li Z, Liu C, Qin K, Liu X
. Ground-Level NO Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence. Environ Sci Technol. 2022; 56(14):9988-9998.
PMC: 9301922.
DOI: 10.1021/acs.est.2c03834.
View
8.
Juhasz A, Smith E, Weber J, Rees M, Rofe A, Kuchel T
. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere. 2007; 69(6):961-6.
DOI: 10.1016/j.chemosphere.2007.05.018.
View
9.
Huang B, Yuan Z, Li D, Zheng M, Nie X, Liao Y
. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: a review. Environ Sci Process Impacts. 2020; 22(8):1596-1615.
DOI: 10.1039/d0em00189a.
View
10.
Golden C, Rothrock Jr M, Mishra A
. Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Res Int. 2019; 122:47-55.
DOI: 10.1016/j.foodres.2019.03.062.
View
11.
Acosta J, Jansen B, Kalbitz K, Faz A, Martinez-Martinez S
. Salinity increases mobility of heavy metals in soils. Chemosphere. 2011; 85(8):1318-24.
DOI: 10.1016/j.chemosphere.2011.07.046.
View
12.
Yin N, Li Y, Cai X, Du H, Wang P, Han Z
. The role of soil arsenic fractionation in the bioaccessibility, transformation, and fate of arsenic in the presence of human gut microbiota. J Hazard Mater. 2020; 401:123366.
DOI: 10.1016/j.jhazmat.2020.123366.
View
13.
Yang H, Huang K, Zhang K, Weng Q, Zhang H, Wang F
. Predicting Heavy Metal Adsorption on Soil with Machine Learning and Mapping Global Distribution of Soil Adsorption Capacities. Environ Sci Technol. 2021; 55(20):14316-14328.
DOI: 10.1021/acs.est.1c02479.
View
14.
Li H, Li M, Zhao D, Li J, Li S, Juhasz A
. Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. Environ Sci Technol. 2019; 53(18):10545-10559.
DOI: 10.1021/acs.est.9b03567.
View
15.
Amnai A, Radola D, Choulet F, Buatier M, Gimbert F
. Impact of ancient iron smelting wastes on current soils: Legacy contamination, environmental availability and fractionation of metals. Sci Total Environ. 2021; 776:145929.
DOI: 10.1016/j.scitotenv.2021.145929.
View
16.
Wang W, Lu T, Liu L, Yang X, Sun X, Qiu G
. Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. J Hazard Mater. 2021; 419:126464.
DOI: 10.1016/j.jhazmat.2021.126464.
View
17.
Smith E, Kempson I, Juhasz A, Weber J, Rofe A, Gancarz D
. In vivo-in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environ Sci Technol. 2011; 45(14):6145-52.
DOI: 10.1021/es200653k.
View
18.
Pelfrene A, Waterlot C, Mazzuca M, Nisse C, Cuny D, Richard A
. Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: a statistical modeling approach. Environ Pollut. 2011; 160(1):130-8.
DOI: 10.1016/j.envpol.2011.09.008.
View
19.
Monneron-Gyurits M, Soubrand M, Joussein E, Courtin-Nomade A, Jubany I, Casas S
. Investigating the relationship between speciation and oral/lung bioaccessibility of a highly contaminated tailing: contribution in health risk assessment. Environ Sci Pollut Res Int. 2020; 27(32):40732-40748.
DOI: 10.1007/s11356-020-10074-x.
View
20.
He B, Zhu X, Cang Z, Liu Y, Lei Y, Chen Z
. Interpretation and Prediction of the CO Sequestration of Steel Slag by Machine Learning. Environ Sci Technol. 2023; 57(46):17940-17949.
DOI: 10.1021/acs.est.2c06133.
View