6.
Salazar K, Espinoza F, Cerda-Gallardo G, Ferrada L, Magdalena R, Ramirez E
. SVCT2 Overexpression and Ascorbic Acid Uptake Increase Cortical Neuron Differentiation, Which Is Dependent on Vitamin C Recycling between Neurons and Astrocytes. Antioxidants (Basel). 2021; 10(9).
PMC: 8465431.
DOI: 10.3390/antiox10091413.
View
7.
Saitoh Y, Nakawa A, Tanabe T, Akiyama T
. The influence of cellular senescence on intracellular vitamin C transport, accumulation, and function. Mol Cell Biochem. 2018; 446(1-2):209-219.
DOI: 10.1007/s11010-018-3287-y.
View
8.
Daruwala R, Song J, Koh W, Rumsey S, Levine M
. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999; 460(3):480-4.
DOI: 10.1016/s0014-5793(99)01393-9.
View
9.
Rohr D, Halfter H, Schulz J, Young P, Gess B
. Sodium-dependent Vitamin C transporter 2 deficiency impairs myelination and remyelination after injury: Roles of collagen and demethylation. Glia. 2017; 65(7):1186-1200.
DOI: 10.1002/glia.23152.
View
10.
Gess B, Rohr D, Fledrich R, Sereda M, Kleffner I, Humberg A
. Sodium-dependent vitamin C transporter 2 deficiency causes hypomyelination and extracellular matrix defects in the peripheral nervous system. J Neurosci. 2011; 31(47):17180-92.
PMC: 6623846.
DOI: 10.1523/JNEUROSCI.3457-11.2011.
View
11.
Ramirez E, Jara N, Ferrada L, Salazar K, Martinez F, Oviedo M
. Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxid Redox Signal. 2022; 37(7-9):538-559.
DOI: 10.1089/ars.2021.0089.
View
12.
Ackermann M, King B, Lieberman N, Bobbili P, Rudloff M, Berndsen C
. Novel obscurins mediate cardiomyocyte adhesion and size via the PI3K/AKT/mTOR signaling pathway. J Mol Cell Cardiol. 2017; 111:27-39.
PMC: 5694667.
DOI: 10.1016/j.yjmcc.2017.08.004.
View
13.
Fiorani M, Scotti M, Guidarelli A, Burattini S, Falcieri E, Cantoni O
. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts. Pharmacol Res. 2020; 159:105042.
DOI: 10.1016/j.phrs.2020.105042.
View
14.
Pellegrino M, Desaphy J, Brocca L, Pierno S, Conte Camerino D, Bottinelli R
. Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol. 2011; 589(Pt 9):2147-60.
PMC: 3098694.
DOI: 10.1113/jphysiol.2010.203232.
View
15.
Powers S, Jackson M
. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008; 88(4):1243-76.
PMC: 2909187.
DOI: 10.1152/physrev.00031.2007.
View
16.
ONeill M, STOCKDALE F
. Differentiation without cell division in cultured skeletal muscle. Dev Biol. 1972; 29(4):410-8.
DOI: 10.1016/0012-1606(72)90081-4.
View
17.
Powers S, Duarte J, Kavazis A, Talbert E
. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2009; 95(1):1-9.
PMC: 2906150.
DOI: 10.1113/expphysiol.2009.050526.
View
18.
Rossi D, Pierantozzi E, Amadsun D, Buonocore S, Rubino E, Sorrentino V
. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules. 2022; 12(4).
PMC: 9026860.
DOI: 10.3390/biom12040488.
View
19.
Xirouchaki C, Jia Y, McGrath M, Greatorex S, Tran M, Merry T
. Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. Sci Adv. 2021; 7(51):eabl4988.
PMC: 8673768.
DOI: 10.1126/sciadv.abl4988.
View
20.
Xu H, Ranjit R, Richardson A, Van Remmen H
. Muscle mitochondrial catalase expression prevents neuromuscular junction disruption, atrophy, and weakness in a mouse model of accelerated sarcopenia. J Cachexia Sarcopenia Muscle. 2021; 12(6):1582-1596.
PMC: 8718066.
DOI: 10.1002/jcsm.12768.
View