6.
Reimer T
. Omission of axillary sentinel lymph node biopsy in early invasive breast cancer. Breast. 2023; 67:124-128.
PMC: 9982316.
DOI: 10.1016/j.breast.2023.01.002.
View
7.
Marme F, Krieghoff-Henning E, Gerber B, Schmitt M, Zahm D, Bauerschlag D
. Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images. Eur J Cancer. 2023; 195:113390.
DOI: 10.1016/j.ejca.2023.113390.
View
8.
Wang L, Li J, Qiao J, Guo X, Bian X, Guo L
. Establishment of a model for predicting sentinel lymph node metastasis in early breast cancer based on contrast-enhanced ultrasound and clinicopathological features. Gland Surg. 2021; 10(5):1701-1712.
PMC: 8184381.
DOI: 10.21037/gs-21-245.
View
9.
Wang J, Yang X, Cai H, Tan W, Jin C, Li L
. Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning. Sci Rep. 2016; 6:27327.
PMC: 4895132.
DOI: 10.1038/srep27327.
View
10.
Bevilacqua J, Kattan M, Fey J, Cody 3rd H, Borgen P, Van Zee K
. Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation. J Clin Oncol. 2007; 25(24):3670-9.
DOI: 10.1200/JCO.2006.08.8013.
View
11.
Svensson M, Dihge L
. The Role of Surgical Axillary Staging Prior to Immediate Breast Reconstruction in the Era of De-Escalation of Axillary Management in Early Breast Cancer. J Pers Med. 2022; 12(8).
PMC: 9410323.
DOI: 10.3390/jpm12081283.
View
12.
Steinhof-Radwanska K, Lorek A, Holecki M, Barczyk-Gutkowska A, Grazynska A, Szczudlo-Chrascina J
. Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer. Curr Oncol. 2021; 28(5):4016-4030.
PMC: 8534697.
DOI: 10.3390/curroncol28050341.
View
13.
Mariscotti G, Houssami N, Durando M, Bergamasco L, Campanino P, Ruggieri C
. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res. 2014; 34(3):1219-25.
View
14.
Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R
. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology. 2019; 292(1):60-66.
DOI: 10.1148/radiol.2019182716.
View
15.
Zhao Y, Liu Y, Xie S, Jiang Y, Shao Z
. A Nomogram Predicting Lymph Node Metastasis in T1 Breast Cancer based on the Surveillance, Epidemiology, and End Results Program. J Cancer. 2019; 10(11):2443-2449.
PMC: 6584352.
DOI: 10.7150/jca.30386.
View
16.
Danaee P, Ghaeini R, Hendrix D
. A DEEP LEARNING APPROACH FOR CANCER DETECTION AND RELEVANT GENE IDENTIFICATION. Pac Symp Biocomput. 2016; 22:219-229.
PMC: 5177447.
DOI: 10.1142/9789813207813_0022.
View
17.
Krag D, Anderson S, Julian T, Brown A, Harlow S, Ashikaga T
. Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial. Lancet Oncol. 2007; 8(10):881-8.
DOI: 10.1016/S1470-2045(07)70278-4.
View
18.
Vrdoljak J, Boban Z, Baric D, Segvic D, Kumric M, Avirovic M
. Applying Explainable Machine Learning Models for Detection of Breast Cancer Lymph Node Metastasis in Patients Eligible for Neoadjuvant Treatment. Cancers (Basel). 2023; 15(3).
PMC: 9913601.
DOI: 10.3390/cancers15030634.
View
19.
Chung A, Gangi A, Amersi F, Zhang X, Giuliano A
. Not Performing a Sentinel Node Biopsy for Older Patients With Early-Stage Invasive Breast Cancer. JAMA Surg. 2015; 150(7):683-4.
DOI: 10.1001/jamasurg.2015.0647.
View
20.
Galimberti V, Cole B, Viale G, Veronesi P, Vicini E, Intra M
. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol. 2018; 19(10):1385-1393.
DOI: 10.1016/S1470-2045(18)30380-2.
View