6.
Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y
. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J. 2015; 82(4):556-69.
DOI: 10.1111/tpj.12804.
View
7.
Liu X, Zhao X, Zhang L, Lu W, Li X, Xiao K
. TaPht1;4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Funct Plant Biol. 2020; 40(4):329-341.
DOI: 10.1071/FP12242.
View
8.
Lopez-Arredondo D, Leyva-Gonzalez M, Gonzalez-Morales S, Lopez-Bucio J, Herrera-Estrella L
. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol. 2014; 65:95-123.
DOI: 10.1146/annurev-arplant-050213-035949.
View
9.
Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X
. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol. 2011; 156(3):1164-75.
PMC: 3135946.
DOI: 10.1104/pp.111.175240.
View
10.
Wang X, Wang Y, Pineros M, Wang Z, Wang W, Li C
. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ. 2013; 37(5):1159-70.
DOI: 10.1111/pce.12224.
View
11.
Noike Y, Okamoto I, Tada Y
. Root epidermis-specific expression of a phosphate transporter TaPT2 enhances the growth of transgenic Arabidopsis under Pi-replete and Pi-depleted conditions. Plant Sci. 2022; 327:111540.
DOI: 10.1016/j.plantsci.2022.111540.
View
12.
Meyer R, Purugganan M
. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013; 14(12):840-52.
DOI: 10.1038/nrg3605.
View
13.
Olsen K, Wendel J
. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol. 2013; 64:47-70.
DOI: 10.1146/annurev-arplant-050312-120048.
View
14.
King M, Wilson A
. Evolution at two levels in humans and chimpanzees. Science. 1975; 188(4184):107-16.
DOI: 10.1126/science.1090005.
View
15.
Suntsova M, Buzdin A
. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics. 2020; 21(Suppl 7):535.
PMC: 7488140.
DOI: 10.1186/s12864-020-06962-8.
View
16.
Rodriguez-Leal D, Lemmon Z, Man J, Bartlett M, Lippman Z
. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell. 2017; 171(2):470-480.e8.
DOI: 10.1016/j.cell.2017.08.030.
View
17.
Zhou S, Cai L, Wu H, Wang B, Gu B, Cui S
. Fine-tuning rice heading date through multiplex editing of the regulatory regions of key genes by CRISPR-Cas9. Plant Biotechnol J. 2023; 22(3):751-758.
PMC: 10893950.
DOI: 10.1111/pbi.14221.
View
18.
Moller I, Gilliham M, Jha D, Mayo G, Roy S, Coates J
. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell. 2009; 21(7):2163-78.
PMC: 2729596.
DOI: 10.1105/tpc.108.064568.
View
19.
Poirier Y, Thoma S, Somerville C, Schiefelbein J
. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 1991; 97(3):1087-93.
PMC: 1081126.
DOI: 10.1104/pp.97.3.1087.
View
20.
Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P
. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol. 2012; 159(4):1571-81.
PMC: 3425197.
DOI: 10.1104/pp.112.196345.
View