» Articles » PMID: 39494363

Enhanced MRI-based Brain Tumour Classification with a Novel Pix2pix Generative Adversarial Network Augmentation Framework

Overview
Journal Brain Commun
Specialty Neurology
Date 2024 Nov 4
PMID 39494363
Authors
Affiliations
Soon will be listed here.
Abstract

The scarcity of medical imaging datasets and privacy concerns pose significant challenges in artificial intelligence-based disease prediction. This poses major concerns to patient confidentiality as there are now tools capable of extracting patient information by merely analysing patient's imaging data. To address this, we propose the use of synthetic data generated by generative adversarial networks as a solution. Our study pioneers the utilisation of a novel Pix2Pix generative adversarial network model, specifically the 'image-to-image translation with conditional adversarial networks,' to generate synthetic datasets for brain tumour classification. We focus on classifying four tumour types: glioma, meningioma, pituitary and healthy. We introduce a novel conditional deep convolutional neural network architecture, developed from convolutional neural network architectures, to process the pre-processed generated synthetic datasets and the original datasets obtained from the Kaggle repository. Our evaluation metrics demonstrate the conditional deep convolutional neural network model's high performance with synthetic images, achieving an accuracy of 86%. Comparative analysis with state-of-the-art models such as Residual Network50, Visual Geometry Group 16, Visual Geometry Group 19 and InceptionV3 highlights the superior performance of our conditional deep convolutional neural network model in brain tumour detection, diagnosis and classification. Our findings underscore the efficacy of our novel Pix2Pix generative adversarial network augmentation technique in creating synthetic datasets for accurate brain tumour classification, offering a promising avenue for improved disease prediction and treatment planning.

Citing Articles

Resection of Meningiomas Invading the Cavernous Sinus: Treatment Strategy and Clinical Outcomes.

Sugawara T, Maehara T Cancers (Basel). 2025; 17(2).

PMID: 39858057 PMC: 11764176. DOI: 10.3390/cancers17020276.


TMS: Ensemble Deep Learning Model for Accurate Classification of Monkeypox Lesions Based on Transformer Models with SVM.

Abdelrahim E, Hashim H, Atlam E, Osman R, Gad I Diagnostics (Basel). 2024; 14(23).

PMID: 39682546 PMC: 11639930. DOI: 10.3390/diagnostics14232638.

References
1.
Khan M, Ashraf I, Alhaisoni M, Damasevicius R, Scherer R, Rehman A . Multimodal Brain Tumor Classification Using Deep Learning and Robust Feature Selection: A Machine Learning Application for Radiologists. Diagnostics (Basel). 2020; 10(8). PMC: 7459797. DOI: 10.3390/diagnostics10080565. View

2.
Han T, Gong X, Feng F, Zhang J, Sun Z, Zhang Y . Privacy-Preserving Multi-Source Domain Adaptation for Medical Data. IEEE J Biomed Health Inform. 2022; 27(2):842-853. DOI: 10.1109/JBHI.2022.3175071. View

3.
Abdusalomov A, Mukhiddinov M, Whangbo T . Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging. Cancers (Basel). 2023; 15(16). PMC: 10453020. DOI: 10.3390/cancers15164172. View

4.
Raghavendra U, Gudigar A, Paul A, Goutham T, Inamdar M, Hegde A . Brain tumor detection and screening using artificial intelligence techniques: Current trends and future perspectives. Comput Biol Med. 2023; 163:107063. DOI: 10.1016/j.compbiomed.2023.107063. View

5.
ZainEldin H, Gamel S, El-Kenawy E, Alharbi A, Khafaga D, Ibrahim A . Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization. Bioengineering (Basel). 2023; 10(1). PMC: 9854739. DOI: 10.3390/bioengineering10010018. View