6.
Kadmiel M, Cidlowski J
. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 2013; 34(9):518-30.
PMC: 3951203.
DOI: 10.1016/j.tips.2013.07.003.
View
7.
Geng S, Zhang Y, Cao A, Liu Y, Di Y, Li J
. Effects of Fat Type and Exogenous Bile Acids on Growth Performance, Nutrient Digestibility, Lipid Metabolism and Breast Muscle Fatty Acid Composition in Broiler Chickens. Animals (Basel). 2022; 12(10).
PMC: 9137457.
DOI: 10.3390/ani12101258.
View
8.
Koorneef L, van den Heuvel J, Kroon J, Boon M, t Hoen P, Hettne K
. Selective Glucocorticoid Receptor Modulation Prevents and Reverses Nonalcoholic Fatty Liver Disease in Male Mice. Endocrinology. 2018; 159(12):3925-3936.
DOI: 10.1210/en.2018-00671.
View
9.
Lu H, Lei X, Winkler R, John S, Kumar D, Li W
. Crosstalk of hepatocyte nuclear factor 4a and glucocorticoid receptor in the regulation of lipid metabolism in mice fed a high-fat-high-sugar diet. Lipids Health Dis. 2022; 21(1):46.
PMC: 9134643.
DOI: 10.1186/s12944-022-01654-6.
View
10.
Traussnigg S, Schattenberg J, Demir M, Wiegand J, Geier A, Teuber G
. Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. Lancet Gastroenterol Hepatol. 2019; 4(10):781-793.
DOI: 10.1016/S2468-1253(19)30184-0.
View
11.
Tanaka H, Makino I
. Ursodeoxycholic acid-dependent activation of the glucocorticoid receptor. Biochem Biophys Res Commun. 1992; 188(2):942-8.
DOI: 10.1016/0006-291x(92)91146-h.
View
12.
Wu L, Liu X, Zhang A, Chen H, Zhao R, Jia Y
. Chronic corticosterone exposure disrupts hepatic and intestinal bile acid metabolism in chicken. Front Vet Sci. 2023; 10:1147024.
PMC: 10229839.
DOI: 10.3389/fvets.2023.1147024.
View
13.
Bose S, Hutson I, Harris C
. Hepatic Glucocorticoid Receptor Plays a Greater Role Than Adipose GR in Metabolic Syndrome Despite Renal Compensation. Endocrinology. 2016; 157(12):4943-4960.
PMC: 5133352.
DOI: 10.1210/en.2016-1615.
View
14.
Higuchi N, Kato M, Tanaka M, Miyazaki M, Takao S, Kohjima M
. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Exp Ther Med. 2012; 2(6):1077-1081.
PMC: 3440820.
DOI: 10.3892/etm.2011.328.
View
15.
Bansal M, Alenezi T, Fu Y, Almansour A, Wang H, Gupta A
. Specific Secondary Bile Acids Control Chicken Necrotic Enteritis. Pathogens. 2021; 10(8).
PMC: 8427939.
DOI: 10.3390/pathogens10081041.
View
16.
Westerbacka J, Kolak M, Kiviluoto T, Arkkila P, Siren J, Hamsten A
. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes. 2007; 56(11):2759-65.
DOI: 10.2337/db07-0156.
View
17.
Wu Y, Zhang M, Meng F, Ren K, Li D, Luo X
. Betaine supplementation alleviates corticosterone-induced hepatic cholesterol accumulation through epigenetic modulation of HMGCR and CYP7A1 genes in laying hens. Poult Sci. 2024; 103(3):103435.
PMC: 10827596.
DOI: 10.1016/j.psj.2024.103435.
View
18.
Lai W, Huang W, Dong B, Cao A, Zhang W, Li J
. Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poult Sci. 2017; 97(1):196-202.
DOI: 10.3382/ps/pex288.
View
19.
Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P
. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc. 2014; 9(9):2100-22.
DOI: 10.1038/nprot.2014.138.
View
20.
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y
. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult Sci. 2019; 98(9):3695-3704.
DOI: 10.3382/ps/pez056.
View