6.
Tenenboim H, Brotman Y
. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. Trends Plant Sci. 2016; 21(9):781-791.
DOI: 10.1016/j.tplants.2016.04.009.
View
7.
Nagegowda D, Gupta P
. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 2020; 294:110457.
DOI: 10.1016/j.plantsci.2020.110457.
View
8.
Arya S, Rookes J, Cahill D, Lenka S
. Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnol Adv. 2020; 45:107635.
DOI: 10.1016/j.biotechadv.2020.107635.
View
9.
Roy S, Radivojevic T, Forrer M, Marti J, Jonnalagadda V, Backman T
. Multiomics Data Collection, Visualization, and Utilization for Guiding Metabolic Engineering. Front Bioeng Biotechnol. 2021; 9:612893.
PMC: 7902046.
DOI: 10.3389/fbioe.2021.612893.
View
10.
Villegas A, Arias J, Aragon D, Ochoa S, Arias M
. First principle-based models in plant suspension cell cultures: a review. Crit Rev Biotechnol. 2017; 37(8):1077-1089.
DOI: 10.1080/07388551.2017.1304891.
View
11.
Courdavault V, OConnor S, Jensen M, Papon N
. Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Nat Prod Rep. 2021; 38(12):2145-2153.
DOI: 10.1039/d0np00092b.
View
12.
Guijas C, Montenegro-Burke J, Warth B, Spilker M, Siuzdak G
. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018; 36(4):316-320.
PMC: 5937131.
DOI: 10.1038/nbt.4101.
View
13.
Martins Conde P, Sauter T, Pfau T
. Constraint Based Modeling Going Multicellular. Front Mol Biosci. 2016; 3:3.
PMC: 4748834.
DOI: 10.3389/fmolb.2016.00003.
View
14.
Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen M
. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol Plant. 2022; 15(11):1664-1695.
DOI: 10.1016/j.molp.2022.09.001.
View
15.
Norsigian C, Pusarla N, McConn J, Yurkovich J, Drager A, Palsson B
. BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 2019; 48(D1):D402-D406.
PMC: 7145653.
DOI: 10.1093/nar/gkz1054.
View
16.
Ribeiro J, Conca V, Santos J, Dias D, Sayi-Ucar N, Frison N
. Expanding ASM models towards integrated processes for short-cut nitrogen removal and bioplastic recovery. Sci Total Environ. 2022; 821:153492.
DOI: 10.1016/j.scitotenv.2022.153492.
View
17.
Leow J, Chan E
. Atypical Michaelis-Menten kinetics in cytochrome P450 enzymes: A focus on substrate inhibition. Biochem Pharmacol. 2019; 169:113615.
DOI: 10.1016/j.bcp.2019.08.017.
View
18.
Dong C, Qu G, Guo J, Wei F, Gao S, Sun Z
. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Sci Bull (Beijing). 2022; 67(3):315-327.
DOI: 10.1016/j.scib.2021.07.003.
View
19.
Wang J, Matthews M, Naik P, Williams C, Ducoste J, Sederoff R
. Flux modeling for monolignol biosynthesis. Curr Opin Biotechnol. 2018; 56:187-192.
DOI: 10.1016/j.copbio.2018.12.003.
View
20.
Morgan J, Rhodes D
. Mathematical modeling of plant metabolic pathways. Metab Eng. 2002; 4(1):80-9.
DOI: 10.1006/mben.2001.0211.
View