CRISPR-Cas Systems and Applications for Crop Bioengineering
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
References
1.
Kan J, Cai Y, Cheng C, Chen S, Jiang C, He Z
. CRISPR/Cas9-guided knockout of eIF4E improves Wheat yellow mosaic virus resistance without yield penalty. Plant Biotechnol J. 2023; 21(5):893-895.
PMC: 10106853.
DOI: 10.1111/pbi.14002.
View
2.
Koonin E, Gootenberg J, Abudayyeh O
. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry. 2023; 62(24):3465-3487.
PMC: 10734277.
DOI: 10.1021/acs.biochem.3c00159.
View
3.
Kwon C, Heo J, Lemmon Z, Capua Y, Hutton S, Van Eck J
. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol. 2019; 38(2):182-188.
DOI: 10.1038/s41587-019-0361-2.
View
4.
Do P, Nguyen C, Bui H, Tran L, Stacey G, Gillman J
. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. 2019; 19(1):311.
PMC: 6632005.
DOI: 10.1186/s12870-019-1906-8.
View
5.
Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S
. Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9. Mol Plant. 2017; 10(9):1238-1241.
DOI: 10.1016/j.molp.2017.06.006.
View