6.
Ziauddeen N, Gurdasani D, OHara M, Hastie C, Roderick P, Yao G
. Characteristics and impact of Long Covid: Findings from an online survey. PLoS One. 2022; 17(3):e0264331.
PMC: 8903286.
DOI: 10.1371/journal.pone.0264331.
View
7.
Magnusson K, Kristoffersen D, DellIsola A, Kiadaliri A, Turkiewicz A, Runhaar J
. Post-covid medical complaints following infection with SARS-CoV-2 Omicron vs Delta variants. Nat Commun. 2022; 13(1):7363.
PMC: 9709355.
DOI: 10.1038/s41467-022-35240-2.
View
8.
Sadlier C, Albrich W, Neogi U, Lunjani N, Horgan M, OToole P
. Metabolic rewiring and serotonin depletion in patients with postacute sequelae of COVID-19. Allergy. 2022; 77(5):1623-1625.
PMC: 9111264.
DOI: 10.1111/all.15253.
View
9.
Zawilska J, Kuczynska K
. Psychiatric and neurological complications of long COVID. J Psychiatr Res. 2022; 156:349-360.
PMC: 9582925.
DOI: 10.1016/j.jpsychires.2022.10.045.
View
10.
Giurgi-Oncu C, Tudoran C, Pop G, Bredicean C, Pescariu S, Giurgiuca A
. Cardiovascular Abnormalities and Mental Health Difficulties Result in a Reduced Quality of Life in the Post-Acute COVID-19 Syndrome. Brain Sci. 2021; 11(11).
PMC: 8615893.
DOI: 10.3390/brainsci11111456.
View
11.
Premraj L, Kannapadi N, Briggs J, Seal S, Battaglini D, Fanning J
. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022; 434:120162.
PMC: 8798975.
DOI: 10.1016/j.jns.2022.120162.
View
12.
Crunfli F, Carregari V, Veras F, Silva L, Nogueira M, Antunes A
. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci U S A. 2022; 119(35):e2200960119.
PMC: 9436354.
DOI: 10.1073/pnas.2200960119.
View
13.
Gutknecht L, Popp S, Waider J, Sommerlandt F, Goppner C, Post A
. Interaction of brain 5-HT synthesis deficiency, chronic stress and sex differentially impact emotional behavior in Tph2 knockout mice. Psychopharmacology (Berl). 2015; 232(14):2429-41.
PMC: 4480945.
DOI: 10.1007/s00213-015-3879-0.
View
14.
Cantuti-Castelvetri L, Ojha R, Pedro L, Djannatian M, Franz J, Kuivanen S
. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370(6518):856-860.
PMC: 7857391.
DOI: 10.1126/science.abd2985.
View
15.
Krey L, Huber M, Hoglinger G, Wegner F
. Can SARS-CoV-2 Infection Lead to Neurodegeneration and Parkinson's Disease?. Brain Sci. 2021; 11(12).
PMC: 8699589.
DOI: 10.3390/brainsci11121654.
View
16.
Townsend L, Dyer A, Jones K, Dunne J, Mooney A, Gaffney F
. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020; 15(11):e0240784.
PMC: 7652254.
DOI: 10.1371/journal.pone.0240784.
View
17.
Guo Y, Cao Q, Hong Z, Tan Y, Chen S, Jin H
. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020; 7(1):11.
PMC: 7068984.
DOI: 10.1186/s40779-020-00240-0.
View
18.
Liao S, Wu J, Liu R, Wang S, Luo J, Yang Y
. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol. 2020; 36:101644.
PMC: 7371982.
DOI: 10.1016/j.redox.2020.101644.
View
19.
Medina M, Avila J
. Understanding the relationship between GSK-3 and Alzheimer's disease: a focus on how GSK-3 can modulate synaptic plasticity processes. Expert Rev Neurother. 2013; 13(5):495-503.
DOI: 10.1586/ern.13.39.
View
20.
Wisessaowapak C, Visitnonthachai D, Watcharasit P, Satayavivad J
. Prolonged arsenic exposure increases tau phosphorylation in differentiated SH-SY5Y cells: The contribution of GSK3 and ERK1/2. Environ Toxicol Pharmacol. 2021; 84:103626.
DOI: 10.1016/j.etap.2021.103626.
View