» Articles » PMID: 39473906

Machine Learning-based Radiomics in Neurodegenerative and Cerebrovascular Disease

Overview
Journal MedComm (2020)
Specialty Health Services
Date 2024 Oct 30
PMID 39473906
Authors
Affiliations
Soon will be listed here.
Abstract

Cognitive impairments, which can be caused by neurodegenerative and cerebrovascular disease, represent a growing global health crisis with far-reaching implications for individuals, families, healthcare systems, and economies worldwide. Notably, neurodegenerative-induced cognitive impairment often presents a different pattern and severity compared to cerebrovascular-induced cognitive impairment. With the development of computational technology, machine learning techniques have developed rapidly, which offers a powerful tool in radiomic analysis, allowing a more comprehensive model that can handle high-dimensional, multivariate data compared to the traditional approach. Such models allow the prediction of the disease development, as well as accurately classify disease from overlapping symptoms, therefore facilitating clinical decision making. This review will focus on the application of machine learning-based radiomics on cognitive impairment caused by neurogenerative and cerebrovascular disease. Within the neurodegenerative category, this review primarily focuses on Alzheimer's disease, while also covering other conditions such as Parkinson's disease, Lewy body dementia, and Huntington's disease. In the cerebrovascular category, we concentrate on poststroke cognitive impairment, including ischemic and hemorrhagic stroke, with additional attention given to small vessel disease and moyamoya disease. We also review the specific challenges and limitations when applying machine learning radiomics, and provide our suggestion to overcome those limitations towards the end, and discuss what could be done for future clinical use.

References
1.
Hu H, Ou Y, Shen X, Qu Y, Ma Y, Wang Z . White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies. Neurosci Biobehav Rev. 2020; 120:16-27. DOI: 10.1016/j.neubiorev.2020.11.007. View

2.
Li Y, Chen G, Wang G, Zhou Z, An S, Dai S . Dominating Alzheimer's disease diagnosis with deep learning on sMRI and DTI-MD. Front Neurol. 2024; 15:1444795. PMC: 11358067. DOI: 10.3389/fneur.2024.1444795. View

3.
Ju R, Hu C, Zhou P, Li Q . Early Diagnosis of Alzheimer's Disease Based on Resting-State Brain Networks and Deep Learning. IEEE/ACM Trans Comput Biol Bioinform. 2018; 16(1):244-257. DOI: 10.1109/TCBB.2017.2776910. View

4.
Nancy Noella R, Priyadarshini J . Machine learning algorithms for the diagnosis of Alzheimer and Parkinson disease. J Med Eng Technol. 2022; 47(1):35-43. DOI: 10.1080/03091902.2022.2097326. View

5.
El Husseini N, Katzan I, Rost N, Blake M, Byun E, Pendlebury S . Cognitive Impairment After Ischemic and Hemorrhagic Stroke: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke. 2023; 54(6):e272-e291. DOI: 10.1161/STR.0000000000000430. View