6.
Skakkebaek N, Rajpert-De Meyts E, Buck Louis G, Toppari J, Andersson A, Eisenberg M
. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol Rev. 2015; 96(1):55-97.
PMC: 4698396.
DOI: 10.1152/physrev.00017.2015.
View
7.
Chang X, Tan Y, Allen D, Bell S, Brown P, Browning L
. IVIVE: Facilitating the Use of Toxicity Data in Risk Assessment and Decision Making. Toxics. 2022; 10(5).
PMC: 9143724.
DOI: 10.3390/toxics10050232.
View
8.
Ciallella H, Zhu H
. Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity. Chem Res Toxicol. 2019; 32(4):536-547.
PMC: 6688471.
DOI: 10.1021/acs.chemrestox.8b00393.
View
9.
Liu J, Mansouri K, Judson R, Martin M, Hong H, Chen M
. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol. 2015; 28(4):738-51.
DOI: 10.1021/tx500501h.
View
10.
Pizzo F, Gadaleta D, Lombardo A, Nicolotti O, Benfenati E
. Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem Cent J. 2015; 9:62.
PMC: 4635184.
DOI: 10.1186/s13065-015-0139-7.
View
11.
Zhu H, Zhang J, Kim M, Boison A, Sedykh A, Moran K
. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants. Chem Res Toxicol. 2014; 27(10):1643-51.
PMC: 4203392.
DOI: 10.1021/tx500145h.
View
12.
Louisse J, de Jong E, van de Sandt J, Blaauboer B, Woutersen R, Piersma A
. The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol Sci. 2010; 118(2):470-84.
DOI: 10.1093/toxsci/kfq270.
View
13.
Hamon J, Renner M, Jamei M, Lukas A, Kopp-Schneider A, Bois F
. Quantitative in vitro to in vivo extrapolation of tissues toxicity. Toxicol In Vitro. 2015; 30(1 Pt A):203-16.
DOI: 10.1016/j.tiv.2015.01.011.
View
14.
Matthews E, Ursem C, Kruhlak N, Benz R, Aragones Sabate D, Yang C
. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part B. Use of (Q)SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol. 2009; 54(1):23-42.
DOI: 10.1016/j.yrtph.2009.01.009.
View
15.
Punt A, Pinckaers N, Peijnenburg A, Louisse J
. Development of a Web-Based Toolbox to Support Quantitative In-Vitro-to-In-Vivo Extrapolations (QIVIVE) within Nonanimal Testing Strategies. Chem Res Toxicol. 2020; 34(2):460-472.
PMC: 7887804.
DOI: 10.1021/acs.chemrestox.0c00307.
View
16.
Yu L, Li H, Zhang C, Zhang Q, Guo J, Li J
. Integrating in vitro testing and physiologically-based pharmacokinetic (PBPK) modelling for chemical liver toxicity assessment-A case study of troglitazone. Environ Toxicol Pharmacol. 2019; 74:103296.
DOI: 10.1016/j.etap.2019.103296.
View
17.
Groh K, Carvalho R, Chipman J, Denslow N, Halder M, Murphy C
. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere. 2014; 120:764-77.
DOI: 10.1016/j.chemosphere.2014.09.068.
View
18.
Ruan T, Li P, Wang H, Li T, Jiang G
. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev. 2023; 123(17):10584-10640.
DOI: 10.1021/acs.chemrev.3c00056.
View
19.
Tan H, Wu J, Zhang R, Zhang C, Li W, Chen Q
. Development, Validation, and Application of a Human Reproductive Toxicity Prediction Model Based on Adverse Outcome Pathway. Environ Sci Technol. 2022; 56(17):12391-12403.
DOI: 10.1021/acs.est.2c02242.
View
20.
Hartung T
. Toxicology for the twenty-first century. Nature. 2009; 460(7252):208-12.
DOI: 10.1038/460208a.
View