6.
Svennberg E, Friberg L, Frykman V, Al-Khalili F, Engdahl J, Rosenqvist M
. Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial. Lancet. 2021; 398(10310):1498-1506.
DOI: 10.1016/S0140-6736(21)01637-8.
View
7.
Singh N, Moneghetti K, Christle J, Hadley D, Froelicher V, Plews D
. Heart Rate Variability: An Old Metric with New Meaning in the Era of Using mHealth technologies for Health and Exercise Training Guidance. Part Two: Prognosis and Training. Arrhythm Electrophysiol Rev. 2018; 7(4):247-255.
PMC: 6304793.
DOI: 10.15420/aer.2018.30.2.
View
8.
Scully C, Lee J, Meyer J, Gorbach A, Granquist-Fraser D, Mendelson Y
. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans Biomed Eng. 2011; 59(2):303-6.
PMC: 3476722.
DOI: 10.1109/TBME.2011.2163157.
View
9.
William A, Kanbour M, Callahan T, Bhargava M, Varma N, Rickard J
. Assessing the accuracy of an automated atrial fibrillation detection algorithm using smartphone technology: The iREAD Study. Heart Rhythm. 2018; 15(10):1561-1565.
DOI: 10.1016/j.hrthm.2018.06.037.
View
10.
Perez M, Mahaffey K, Hedlin H, Rumsfeld J, Garcia A, Ferris T
. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019; 381(20):1909-1917.
PMC: 8112605.
DOI: 10.1056/NEJMoa1901183.
View
11.
Hughes M, Addala A, Buckingham B
. Digital Technology for Diabetes. N Engl J Med. 2023; 389(22):2076-2086.
DOI: 10.1056/NEJMra2215899.
View
12.
Raghunath S, Cerna A, Jing L, vanMaanen D, Stough J, Hartzel D
. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat Med. 2020; 26(6):886-891.
DOI: 10.1038/s41591-020-0870-z.
View
13.
Leitao F, Moreira E, Alves F, Lourenco M, Azevedo O, Gaspar J
. High-Resolution Seismocardiogram Acquisition and Analysis System. Sensors (Basel). 2018; 18(10).
PMC: 6211127.
DOI: 10.3390/s18103441.
View
14.
Crouthamel M, Quattrocchi E, Watts S, Wang S, Berry P, Garcia-Gancedo L
. Using a ResearchKit Smartphone App to Collect Rheumatoid Arthritis Symptoms From Real-World Participants: Feasibility Study. JMIR Mhealth Uhealth. 2018; 6(9):e177.
PMC: 6231853.
DOI: 10.2196/mhealth.9656.
View
15.
Gillis A, Rose M
. Temporal patterns of paroxysmal atrial fibrillation following DDDR pacemaker implantation. Am J Cardiol. 2000; 85(12):1445-50.
DOI: 10.1016/s0002-9149(00)00792-x.
View
16.
Kitsiou S, Vatani H, Pare G, Gerber B, Buchholz S, Kansal M
. Effectiveness of Mobile Health Technology Interventions for Patients With Heart Failure: Systematic Review and Meta-analysis. Can J Cardiol. 2021; 37(8):1248-1259.
DOI: 10.1016/j.cjca.2021.02.015.
View
17.
Gropler M, Dalal A, Van Hare G, Avari Silva J
. Can smartphone wireless ECGs be used to accurately assess ECG intervals in pediatrics? A comparison of mobile health monitoring to standard 12-lead ECG. PLoS One. 2018; 13(9):e0204403.
PMC: 6160047.
DOI: 10.1371/journal.pone.0204403.
View
18.
Wang A, Nguyen D, Sridhar A, Gollakota S
. Using smart speakers to contactlessly monitor heart rhythms. Commun Biol. 2021; 4(1):319.
PMC: 7943557.
DOI: 10.1038/s42003-021-01824-9.
View
19.
Bot B, Suver C, Chaibub Neto E, Kellen M, Klein A, Bare C
. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data. 2016; 3:160011.
PMC: 4776701.
DOI: 10.1038/sdata.2016.11.
View
20.
Yoo S, Lim K, Baek H, Jang S, Hwang G, Kim H
. Developing a mobile epilepsy management application integrated with an electronic health record for effective seizure management. Int J Med Inform. 2019; 134:104051.
DOI: 10.1016/j.ijmedinf.2019.104051.
View