6.
Jeffrey K, Camps M, Rommel C, Mackay C
. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007; 6(5):391-403.
DOI: 10.1038/nrd2289.
View
7.
Dasgupta A, Wu D, Tian L, Xiong P, Dunham-Snary K, Chen K
. Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygen-Sensing, Metabolism, and Dynamics. Compr Physiol. 2020; 10(2):713-765.
DOI: 10.1002/cphy.c190027.
View
8.
Sheng J, Li H, Dai Q, Lu C, Xu M, Zhang J
. DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways. J Cell Physiol. 2018; 234(3):3043-3057.
DOI: 10.1002/jcp.27124.
View
9.
Yeghiazarians Y, Jneid H, Tietjens J, Redline S, Brown D, El-Sherif N
. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021; 144(3):e56-e67.
DOI: 10.1161/CIR.0000000000000988.
View
10.
Cho H, Heo W, Han J, Lee Y, Park J, Kang M
. Chronological Change of Right Ventricle by Chronic Intermittent Hypoxia in Mice. Sleep. 2017; 40(8).
DOI: 10.1093/sleep/zsx103.
View
11.
Wu F, Zhang Y, Teng F, Li H, Guo S
. S100a8/a9 contributes to sepsis-induced cardiomyopathy by activating ERK1/2-Drp1-mediated mitochondrial fission and respiratory dysfunction. Int Immunopharmacol. 2023; 115:109716.
DOI: 10.1016/j.intimp.2023.109716.
View
12.
Liu P, Yang X, Niu J, Hei C
. Hyperglycemia aggravates ischemic brain damage ERK1/2 activated cell autophagy and mitochondrial fission. Front Endocrinol (Lausanne). 2022; 13:928591.
PMC: 9388937.
DOI: 10.3389/fendo.2022.928591.
View
13.
Pan Z, Wu X, Zhang X, Hu K
. Phosphodiesterase 4B activation exacerbates pulmonary hypertension induced by intermittent hypoxia by regulating mitochondrial injury and cAMP/PKA/p-CREB/PGC-1α signaling. Biomed Pharmacother. 2022; 158:114095.
DOI: 10.1016/j.biopha.2022.114095.
View
14.
Marsboom G, Toth P, Ryan J, Hong Z, Wu X, Fang Y
. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res. 2012; 110(11):1484-97.
PMC: 3539779.
DOI: 10.1161/CIRCRESAHA.111.263848.
View
15.
Duez H, Staels B
. Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J Appl Physiol (1985). 2009; 107(6):1972-80.
PMC: 2966474.
DOI: 10.1152/japplphysiol.00570.2009.
View
16.
Kou L, Chi X, Sun Y, Han C, Wan F, Hu J
. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. J Neuroinflammation. 2022; 19(1):133.
PMC: 9169406.
DOI: 10.1186/s12974-022-02494-y.
View
17.
Hollenberg A
. Metabolic health and nuclear-receptor sensitivity. N Engl J Med. 2012; 366(14):1345-7.
DOI: 10.1056/NEJMcibr1114529.
View
18.
Bermudez-Munoz J, Celaya A, Garcia-Mato A, Munoz-Espin D, Rodriguez-de la Rosa L, Serrano M
. Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel). 2021; 10(9).
PMC: 8467085.
DOI: 10.3390/antiox10091351.
View
19.
Wang Q, Sundar I, Lucas J, Park J, Nogales A, Martinez-Sobrido L
. Circadian clock molecule REV-ERBα regulates lung fibrotic progression through collagen stabilization. Nat Commun. 2023; 14(1):1295.
PMC: 9996598.
DOI: 10.1038/s41467-023-36896-0.
View
20.
Owens D, Keyse S
. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007; 26(22):3203-13.
DOI: 10.1038/sj.onc.1210412.
View