6.
Zoubos A, Seaber A, Urbaniak J
. Hemodynamic and histological differences in end-to-side anastomoses. Microsurgery. 1992; 13(4):200-3.
DOI: 10.1002/micr.1920130411.
View
7.
Leva C, Engstrom K
. Flow resistance over technical anastomoses in relation to the angle of distal end-to-side connections. Scand Cardiovasc J. 2003; 37(3):165-71.
DOI: 10.1080/cdv.37.3.165.171.
View
8.
Staalsen N, Ulrich M, Kim W, Pedersen E, How T, M Hasenkam J
. In vivo analysis and three-dimensional visualisation of blood flow patterns at vascular end-to-side anastomoses. Eur J Vasc Endovasc Surg. 1995; 10(2):168-81.
DOI: 10.1016/s1078-5884(05)80108-x.
View
9.
Zhang L, Moskovitz M, Piscatelli S, Longaker M, Siebert J
. Hemodynamic study of different angled end-to-side anastomoses. Microsurgery. 1995; 16(2):114-7.
DOI: 10.1002/micr.1920160214.
View
10.
Schneider S, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz R
. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007; 104(19):7899-903.
PMC: 1876544.
DOI: 10.1073/pnas.0608422104.
View
11.
Casa L, Deaton D, Ku D
. Role of high shear rate in thrombosis. J Vasc Surg. 2015; 61(4):1068-80.
DOI: 10.1016/j.jvs.2014.12.050.
View
12.
Meyer R, Foley J, Harkema S, Sierra A, POTCHEN E
. Magnetic resonance measurement of blood flow in peripheral vessels after acute exercise. Magn Reson Imaging. 1993; 11(8):1085-92.
DOI: 10.1016/0730-725x(93)90235-6.
View
13.
Sorace A, Robbin M, Umphrey H, Abts C, Berry J, Lockhart M
. Ultrasound measurement of brachial artery elasticity prior to hemodialysis access placement: a pilot study. J Ultrasound Med. 2012; 31(10):1581-8.
PMC: 3462358.
DOI: 10.7863/jum.2012.31.10.1581.
View
14.
Takashima K, Kitou T, Mori K, Ikeuchi K
. Simulation and experimental observation of contact conditions between stents and artery models. Med Eng Phys. 2006; 29(3):326-35.
DOI: 10.1016/j.medengphy.2006.04.003.
View
15.
Ghalichi F, Deng X, De Champlain A, Douville Y, King M, Guidoin R
. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology. 1999; 35(4-5):281-94.
DOI: 10.1016/s0006-355x(99)80011-0.
View
16.
Kwon O, Krishnamoorthy M, Cho Y, Sankovic J, Banerjee R
. Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty. J Biomech Eng. 2008; 130(1):011003.
DOI: 10.1115/1.2838029.
View
17.
Wen J, Ho H, Peng L, Yuan D, Zheng T
. Effect of Anastomosis Angles on Retrograde Perfusion and Hemodynamics of Hybrid Treatment for Thoracoabdominal Aortic Aneurysm. Ann Vasc Surg. 2021; 79:298-309.
DOI: 10.1016/j.avsg.2021.08.009.
View
18.
Cho Y, Kensey K
. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology. 1991; 28(3-4):241-62.
DOI: 10.3233/bir-1991-283-415.
View
19.
Mehri R, Mavriplis C, Fenech M
. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. PLoS One. 2018; 13(7):e0199911.
PMC: 6053157.
DOI: 10.1371/journal.pone.0199911.
View
20.
Lorbeer R, Grotz A, Dorr M, Volzke H, Lieb W, Kuhn J
. Reference values of vessel diameters, stenosis prevalence, and arterial variations of the lower limb arteries in a male population sample using contrast-enhanced MR angiography. PLoS One. 2018; 13(6):e0197559.
PMC: 6010244.
DOI: 10.1371/journal.pone.0197559.
View