6.
Liu L, Bao P, Qiao J, Zhang H, Qi L
. Chiral ligand exchange capillary electrophoresis with L-dipeptides as chiral ligands for separation of Dns-D,L-amino acids. Talanta. 2020; 217:121069.
DOI: 10.1016/j.talanta.2020.121069.
View
7.
Salido-Fortuna S, Fernandez-Bachiller M, Marina M, Castro-Puyana M
. Synthesis and characterization of carnitine-based ionic liquids and their evaluation as additives in cyclodextrin-electrokinetic chromatography for the chiral separation of thiol amino acids. J Chromatogr A. 2022; 1670:462955.
DOI: 10.1016/j.chroma.2022.462955.
View
8.
Wei J, Guo Y, Li J, Yuan M, Long T, Liu Z
. Optically Active Ultrafine Au-Ag Alloy Nanoparticles Used for Colorimetric Chiral Recognition and Circular Dichroism Sensing of Enantiomers. Anal Chem. 2017; 89(18):9781-9787.
DOI: 10.1021/acs.analchem.7b01723.
View
9.
Zor E
. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. Talanta. 2018; 184:149-155.
DOI: 10.1016/j.talanta.2018.02.096.
View
10.
Liao X, Wu B, Li H, Zhang M, Cai M, Lang B
. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots. Anal Chem. 2023; 95(39):14573-14581.
DOI: 10.1021/acs.analchem.3c01854.
View
11.
Goswami S, Sen D, Das N
. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu(2+) with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett. 2010; 12(4):856-9.
DOI: 10.1021/ol9029066.
View
12.
Xu X, Ray R, Gu Y, Ploehn H, Gearheart L, Raker K
. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004; 126(40):12736-7.
DOI: 10.1021/ja040082h.
View
13.
Wang T, Chen C, Wang C, Tan Y, Liao W
. Multicolor Functional Carbon Dots via One-Step Refluxing Synthesis. ACS Sens. 2017; 2(3):354-363.
DOI: 10.1021/acssensors.6b00607.
View
14.
Liu Y, Xu B, Lu M, Li S, Guo J, Chen F
. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact Mater. 2022; 12:246-256.
PMC: 8897311.
DOI: 10.1016/j.bioactmat.2021.10.023.
View
15.
Tang X, Yu H, Bui B, Wang L, Xing C, Wang S
. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact Mater. 2020; 6(6):1541-1554.
PMC: 7691164.
DOI: 10.1016/j.bioactmat.2020.11.006.
View
16.
Li P, Xue S, Sun L, Zong X, An L, Qu D
. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light Sci Appl. 2022; 11(1):298.
PMC: 9561683.
DOI: 10.1038/s41377-022-00984-5.
View
17.
Sasikumar K, Rajamanikandan R, Ju H
. Nitrogen- and Sulfur-Codoped Strong Green Fluorescent Carbon Dots for the Highly Specific Quantification of Quercetin in Food Samples. Materials (Basel). 2023; 16(24).
PMC: 10744681.
DOI: 10.3390/ma16247686.
View
18.
Wang H, Sun C, Chen X, Zhang Y, Colvin V, Rice Q
. Excitation wavelength independent visible color emission of carbon dots. Nanoscale. 2017; 9(5):1909-1915.
PMC: 6265045.
DOI: 10.1039/c6nr09200d.
View
19.
Zhang H, Wang G, Zhang Z, Lei J, Liu T, Xing G
. One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light Sci Appl. 2022; 11(1):113.
PMC: 9046223.
DOI: 10.1038/s41377-022-00798-5.
View
20.
Huang A, Zhang L, Li D, Liu Y, Yan H, Li W
. Asymmetric One-Pot Construction of Three Stereogenic Elements: Chiral Carbon Center, Stereoisomeric Alkenes, and Chirality of Axial Styrenes. Org Lett. 2018; 21(1):95-99.
DOI: 10.1021/acs.orglett.8b03492.
View