6.
Iwasaki S, Kawamata T, Tomari Y
. Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell. 2009; 34(1):58-67.
DOI: 10.1016/j.molcel.2009.02.010.
View
7.
Jannot G, Bajan S, Giguere N, Bouasker S, Banville I, Piquet S
. The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep. 2011; 12(6):581-6.
PMC: 3128278.
DOI: 10.1038/embor.2011.66.
View
8.
Suzuki H, Katanasaka Y, Sunagawa Y, Miyazaki Y, Funamoto M, Wada H
. Tyrosine phosphorylation of RACK1 triggers cardiomyocyte hypertrophy by regulating the interaction between p300 and GATA4. Biochim Biophys Acta. 2016; 1862(9):1544-57.
DOI: 10.1016/j.bbadis.2016.05.006.
View
9.
Volta V, Beugnet A, Gallo S, Magri L, Brina D, Pesce E
. RACK1 depletion in a mouse model causes lethality, pigmentation deficits and reduction in protein synthesis efficiency. Cell Mol Life Sci. 2012; 70(8):1439-50.
PMC: 11113757.
DOI: 10.1007/s00018-012-1215-y.
View
10.
Pass J, Gao J, Jones W, Wead W, Wu X, Zhang J
. Enhanced PKC beta II translocation and PKC beta II-RACK1 interactions in PKC epsilon-induced heart failure: a role for RACK1. Am J Physiol Heart Circ Physiol. 2001; 281(6):H2500-10.
DOI: 10.1152/ajpheart.2001.281.6.H2500.
View
11.
Kong P, Christia P, Frangogiannis N
. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2013; 71(4):549-74.
PMC: 3769482.
DOI: 10.1007/s00018-013-1349-6.
View
12.
Frangogiannis N
. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2018; 65:70-99.
DOI: 10.1016/j.mam.2018.07.001.
View
13.
Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P
. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13(5):613-8.
DOI: 10.1038/nm1582.
View
14.
Yang W, Zhuang Y, Wu H, Su S, Li Y, Wang C
. Substrate-dependent interaction of SPOP and RACK1 aggravates cardiac fibrosis following myocardial infarction. Cell Chem Biol. 2023; 30(10):1248-1260.e4.
DOI: 10.1016/j.chembiol.2023.06.015.
View
15.
Ceci M, Carlantoni C, Missinato M, Bonvissuto D, Di Giacomo B, Contu R
. Micro RNAs are involved in activation of epicardium during zebrafish heart regeneration. Cell Death Discov. 2018; 4:41.
PMC: 5849881.
DOI: 10.1038/s41420-018-0041-x.
View
16.
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simoes M, Mintcheva J
. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat Genet. 2022; 54(8):1227-1237.
PMC: 7613248.
DOI: 10.1038/s41588-022-01129-5.
View
17.
Romano N, Ceci M
. The face of epicardial and endocardial derived cells in zebrafish. Exp Cell Res. 2018; 369(1):166-175.
DOI: 10.1016/j.yexcr.2018.05.022.
View
18.
Dalby B, Cates S, Harris A, Ohki E, Tilkins M, Price P
. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004; 33(2):95-103.
DOI: 10.1016/j.ymeth.2003.11.023.
View
19.
Kowalewski J, Paris T, Gonzalez C, Lelievre E, Castano Valencia L, Boutrois M
. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One. 2021; 16(7):e0254533.
PMC: 8274849.
DOI: 10.1371/journal.pone.0254533.
View
20.
Kalen M, Wallgard E, Asker N, Nasevicius A, Athley E, Billgren E
. Combination of reverse and chemical genetic screens reveals angiogenesis inhibitors and targets. Chem Biol. 2009; 16(4):432-41.
PMC: 3984492.
DOI: 10.1016/j.chembiol.2009.02.010.
View