6.
Gao L, Zhang Y, Sterling K, Song W
. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener. 2022; 11(1):4.
PMC: 8796548.
DOI: 10.1186/s40035-022-00279-0.
View
7.
Nelson L, Tabet N
. Slowing the progression of Alzheimer's disease; what works?. Ageing Res Rev. 2015; 23(Pt B):193-209.
DOI: 10.1016/j.arr.2015.07.002.
View
8.
Lonskaya I, Hebron M, Desforges N, Franjie A, Moussa C
. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013; 5(8):1247-62.
PMC: 3944464.
DOI: 10.1002/emmm.201302771.
View
9.
Fagiani F, Lanni C, Racchi M, Govoni S
. Targeting dementias through cancer kinases inhibition. Alzheimers Dement (N Y). 2020; 6(1):e12044.
PMC: 7341824.
DOI: 10.1002/trc2.12044.
View
10.
La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata E
. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Prog Neurobiol. 2021; 202:102031.
DOI: 10.1016/j.pneurobio.2021.102031.
View
11.
Nobili A, DAmelio M, Viscomi M
. Nilotinib: from animal-based studies to clinical investigation in Alzheimer's disease patients. Neural Regen Res. 2022; 18(4):803-804.
PMC: 9700081.
DOI: 10.4103/1673-5374.350700.
View
12.
Reiss A, Montufar N, DeLeon J, Pinkhasov A, Gomolin I, Glass A
. Alzheimer Disease Clinical Trials Targeting Amyloid: Lessons Learned From Success in Mice and Failure in Humans. Neurologist. 2021; 26(2):52-61.
DOI: 10.1097/NRL.0000000000000320.
View
13.
Suzuki N, Hatta T, Ito M, Kusakabe K
. Anti-amyloid-β Antibodies and Anti-tau Therapies for Alzheimer's Disease: Recent Advances and Perspectives. Chem Pharm Bull (Tokyo). 2024; 72(7):602-609.
DOI: 10.1248/cpb.c24-00069.
View
14.
Tampellini D, Capetillo-Zarate E, Dumont M, Huang Z, Yu F, Lin M
. Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J Neurosci. 2010; 30(43):14299-304.
PMC: 2972675.
DOI: 10.1523/JNEUROSCI.3383-10.2010.
View
15.
Liu P, Xie Y, Meng X, Kang J
. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther. 2019; 4:29.
PMC: 6799833.
DOI: 10.1038/s41392-019-0063-8.
View
16.
Du W, Lei C, Dong Y
. MicroRNA-149 is downregulated in Alzheimer's disease and inhibits β-amyloid accumulation and ameliorates neuronal viability through targeting BACE1. Genet Mol Biol. 2021; 44(1):e20200064.
PMC: 7802068.
DOI: 10.1590/1678-4685-GMB-2020-0064.
View
17.
Simuni T, Fiske B, Merchant K, Coffey C, Klingner E, Caspell-Garcia C
. Efficacy of Nilotinib in Patients With Moderately Advanced Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2020; 78(3):312-320.
PMC: 7737147.
DOI: 10.1001/jamaneurol.2020.4725.
View
18.
Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V
. Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Curr Neuropharmacol. 2021; 20(4):675-692.
PMC: 9878959.
DOI: 10.2174/1570159X19666210517114016.
View
19.
Barros-Viegas A, Carmona V, Ferreiro E, Guedes J, Cardoso A, Cunha P
. miRNA-31 Improves Cognition and Abolishes Amyloid-β Pathology by Targeting APP and BACE1 in an Animal Model of Alzheimer's Disease. Mol Ther Nucleic Acids. 2020; 19:1219-1236.
PMC: 7031139.
DOI: 10.1016/j.omtn.2020.01.010.
View
20.
Calkins M, Reddy P
. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochim Biophys Acta. 2011; 1812(4):507-13.
PMC: 3042500.
DOI: 10.1016/j.bbadis.2011.01.007.
View