6.
Lan X, Li D, Zhong B, Ren J, Wang X, Sun Q
. Identification of differentially expressed genes related to metabolic syndrome induced with high-fat diet in E3 rats. Exp Biol Med (Maywood). 2014; 240(2):235-41.
PMC: 4935314.
DOI: 10.1177/1535370214554531.
View
7.
Miao H, Zhao Y, Vaziri N, Tang D, Chen H, Chen H
. Lipidomics Biomarkers of Diet-Induced Hyperlipidemia and Its Treatment with Poria cocos. J Agric Food Chem. 2016; 64(4):969-79.
DOI: 10.1021/acs.jafc.5b05350.
View
8.
Moura R, Ribeiro C, de Oliveira J, Stevanato E, de Mello M
. Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. Br J Nutr. 2008; 101(8):1178-84.
DOI: 10.1017/S0007114508066774.
View
9.
Cali A, Caprio S
. Ectopic fat deposition and the metabolic syndrome in obese children and adolescents. Horm Res. 2009; 71 Suppl 1:2-7.
DOI: 10.1159/000178028.
View
10.
Paunovic M, Kotur-Stevuljevic J, Arsic A, Milosevic M, Todorovic V, Guzonjic A
. Antioxidative Effects of Black Currant and Cornelian Cherry Juices in Different Tissues of an Experimental Model of Metabolic Syndrome in Rats. Antioxidants (Basel). 2023; 12(6).
PMC: 10294917.
DOI: 10.3390/antiox12061148.
View
11.
Gowda S, Gao Z, Chen Z, Abe T, Hori S, Fukiya S
. Untargeted Lipidomic Analysis of Plasma from High-fat Diet-induced Obese Rats Using UHPLC-Linear Trap Quadrupole-Orbitrap MS. Anal Sci. 2020; 36(7):821-828.
DOI: 10.2116/analsci.19P442.
View
12.
Feillet-Coudray C, Fouret G, Vigor C, Bonafos B, Jover B, Blachnio-Zabielska A
. Long-Term Measures of Dyslipidemia, Inflammation, and Oxidative Stress in Rats Fed a High-Fat/High-Fructose Diet. Lipids. 2019; 54(1):81-97.
DOI: 10.1002/lipd.12128.
View
13.
Sanchez-Illana A, Pineiro-Ramos J, Sanjuan-Herraez J, Vento M, Quintas G, Kuligowski J
. Evaluation of batch effect elimination using quality control replicates in LC-MS metabolite profiling. Anal Chim Acta. 2018; 1019:38-48.
DOI: 10.1016/j.aca.2018.02.053.
View
14.
Saklayen M
. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018; 20(2):12.
PMC: 5866840.
DOI: 10.1007/s11906-018-0812-z.
View
15.
Jeon Y, Kim Y, Lee G, Kim J
. Physiological and pathological roles of lipogenesis. Nat Metab. 2023; 5(5):735-759.
DOI: 10.1038/s42255-023-00786-y.
View
16.
Yue S, Peng C, Zhao D, Xia X, Tan C, Wang Q
. Theabrownin isolated from Pu-erh tea regulates Bacteroidetes to improve metabolic syndrome of rats induced by high-fat, high-sugar and high-salt diet. J Sci Food Agric. 2022; 102(10):4250-4265.
DOI: 10.1002/jsfa.11777.
View
17.
Mika A, Sledzinski T, Stepnowski P
. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem. 2017; 26(1):60-103.
DOI: 10.2174/0929867324666171003121127.
View
18.
Wong S, Chin K, Suhaimi F, Fairus A, Ima-Nirwana S
. Animal models of metabolic syndrome: a review. Nutr Metab (Lond). 2016; 13:65.
PMC: 5050917.
DOI: 10.1186/s12986-016-0123-9.
View
19.
Zhou X, Han D, Xu R, Li S, Wu H, Qu C
. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet. PLoS One. 2014; 9(12):e115148.
PMC: 4263741.
DOI: 10.1371/journal.pone.0115148.
View
20.
Sokolowska E, Blachnio-Zabielska A
. The Role of Ceramides in Insulin Resistance. Front Endocrinol (Lausanne). 2019; 10:577.
PMC: 6712072.
DOI: 10.3389/fendo.2019.00577.
View