6.
Xu X, Zhang X, Huang Z, Xu Y, Tang D, Zhang B
. Microbial community composition and soil metabolism in the coexisting Cordyceps militaris and Ophiocordyceps highlandensis. J Basic Microbiol. 2022; 62(10):1254-1273.
DOI: 10.1002/jobm.202200216.
View
7.
Trivedi P, Leach J, Tringe S, Sa T, Singh B
. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020; 18(11):607-621.
DOI: 10.1038/s41579-020-0412-1.
View
8.
Fierer N, Leff J, Adams B, Nielsen U, Bates S, Lauber C
. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A. 2012; 109(52):21390-5.
PMC: 3535587.
DOI: 10.1073/pnas.1215210110.
View
9.
Buenz E, Bauer B, Osmundson T, Motley T
. The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. J Ethnopharmacol. 2004; 96(1-2):19-29.
DOI: 10.1016/j.jep.2004.09.029.
View
10.
Rasigraf O, Kool D, Jetten M, Sinninghe Damste J, Ettwig K
. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera". Appl Environ Microbiol. 2014; 80(8):2451-60.
PMC: 3993179.
DOI: 10.1128/AEM.04199-13.
View
11.
Aqeel M, Ran J, Hu W, Irshad M, Dong L, Akram M
. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. Chemosphere. 2023; 318:137924.
DOI: 10.1016/j.chemosphere.2023.137924.
View
12.
Wei Y, Zhang L, Wang J, Wang W, Niyati N, Guo Y
. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci Total Environ. 2020; 755(Pt 1):142548.
PMC: 7521209.
DOI: 10.1016/j.scitotenv.2020.142548.
View
13.
Guo L, Hong Y, Zhou Q, Zhu Q, Xu X, Wang J
. Fungus-larva relation in the formation of Cordyceps sinensis as revealed by stable carbon isotope analysis. Sci Rep. 2017; 7(1):7789.
PMC: 5552863.
DOI: 10.1038/s41598-017-08198-1.
View
14.
Liao H, Qin F, Wang K, Zhang Y, Hao X, Chen W
. Long-term chemical fertilization-driving changes in soil autotrophic microbial community depresses soil CO fixation in a Mollisol. Sci Total Environ. 2020; 748:141317.
DOI: 10.1016/j.scitotenv.2020.141317.
View
15.
Ren M, Zhang Z, Wang X, Zhou Z, Chen D, Zeng H
. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin. Front Microbiol. 2018; 9:431.
PMC: 5855357.
DOI: 10.3389/fmicb.2018.00431.
View
16.
Liu J, Cui X, Liu Z, Guo Z, Yu Z, Yao Q
. The Diversity and Geographic Distribution of Cultivable -Like Bacteria Across Black Soils of Northeast China. Front Microbiol. 2019; 10:1424.
PMC: 6598460.
DOI: 10.3389/fmicb.2019.01424.
View
17.
Li Y, Nie C, Liu Y, Du W, He P
. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Sci Total Environ. 2018; 654:264-274.
DOI: 10.1016/j.scitotenv.2018.11.031.
View
18.
OMara F
. The role of grasslands in food security and climate change. Ann Bot. 2012; 110(6):1263-70.
PMC: 3478061.
DOI: 10.1093/aob/mcs209.
View
19.
Duan M, Yan R, Wang Q, Zhou B, Zhu H, Liu G
. Integrated microbiological and metabolomics analyses to understand the mechanism that allows modified biochar to affect the alkalinity of saline soil and winter wheat growth. Sci Total Environ. 2023; 866:161330.
DOI: 10.1016/j.scitotenv.2022.161330.
View
20.
Carey C, Michael Beman J, Eviner V, Malmstrom C, Hart S
. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front Microbiol. 2015; 6:466.
PMC: 4438599.
DOI: 10.3389/fmicb.2015.00466.
View