6.
Nagel S, Steffen I, Schwartz S, Hamm B, Elgeti T
. Age-dependent diagnostic accuracy of clinical scoring systems and D-dimer levels in the diagnosis of pulmonary embolism with computed tomography pulmonary angiography (CTPA). Eur Radiol. 2019; 29(9):4563-4571.
DOI: 10.1007/s00330-019-06039-5.
View
7.
Takach Lapner S, Julian J, Linkins L, Bates S, Kearon C
. Comparison of clinical probability-adjusted D-dimer and age-adjusted D-dimer interpretation to exclude venous thromboembolism. Thromb Haemost. 2017; 117(10):1937-1943.
DOI: 10.1160/TH17-03-0182.
View
8.
Frere C, Bournet B, Gourgou S, Fraisse J, Canivet C, Connors J
. Incidence of Venous Thromboembolism in Patients With Newly Diagnosed Pancreatic Cancer and Factors Associated With Outcomes. Gastroenterology. 2019; 158(5):1346-1358.e4.
DOI: 10.1053/j.gastro.2019.12.009.
View
9.
Zhou T, Cheng Q, Lu H, Li Q, Zhang X, Qiu S
. Deep learning methods for medical image fusion: A review. Comput Biol Med. 2023; 160:106959.
DOI: 10.1016/j.compbiomed.2023.106959.
View
10.
Freund Y, Cohen-Aubart F, Bloom B
. Acute Pulmonary Embolism: A Review. JAMA. 2022; 328(13):1336-1345.
DOI: 10.1001/jama.2022.16815.
View
11.
Bruix J, Sherman M
. Management of hepatocellular carcinoma: an update. Hepatology. 2011; 53(3):1020-2.
PMC: 3084991.
DOI: 10.1002/hep.24199.
View
12.
Hong S, Won Y, Lee J, Jung K, Kong H, Im J
. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2018. Cancer Res Treat. 2021; 53(2):301-315.
PMC: 8053867.
DOI: 10.4143/crt.2021.291.
View
13.
Lee K, Lee J, Kim J, Lee H, Chang Y, Woo H
. Oral health and gastrointestinal cancer: A nationwide cohort study. J Clin Periodontol. 2020; 47(7):796-808.
DOI: 10.1111/jcpe.13304.
View
14.
Ohashi Y, Ikeda M, Kunitoh H, Sasako M, Okusaka T, Mukai H
. Venous thromboembolism in cancer patients: report of baseline data from the multicentre, prospective Cancer-VTE Registry. Jpn J Clin Oncol. 2020; 50(11):1246-1253.
PMC: 7579341.
DOI: 10.1093/jjco/hyaa112.
View
15.
Di Nisio M, van Es N, Buller H
. Deep vein thrombosis and pulmonary embolism. Lancet. 2016; 388(10063):3060-3073.
DOI: 10.1016/S0140-6736(16)30514-1.
View
16.
Villacorta H, Pickering J, Horiuchi Y, Olim M, Coyne C, Maisel A
. Machine learning with D-dimer in the risk stratification for pulmonary embolism: a derivation and internal validation study. Eur Heart J Acute Cardiovasc Care. 2021; 11(1):13-19.
DOI: 10.1093/ehjacc/zuab089.
View
17.
Yokoyama S, Hamada T, Higashi M, Matsuo K, Maemura K, Kurahara H
. Predicted Prognosis of Patients with Pancreatic Cancer by Machine Learning. Clin Cancer Res. 2020; 26(10):2411-2421.
DOI: 10.1158/1078-0432.CCR-19-1247.
View
18.
Sorensen H, Mellemkjaer L, Olsen J, Baron J
. Prognosis of cancers associated with venous thromboembolism. N Engl J Med. 2000; 343(25):1846-50.
DOI: 10.1056/NEJM200012213432504.
View
19.
Gross C, Galusha D, Krumholz H
. The impact of venous thromboembolism on risk of death or hemorrhage in older cancer patients. J Gen Intern Med. 2007; 22(3):321-6.
PMC: 1824718.
DOI: 10.1007/s11606-006-0019-x.
View
20.
Banerjee I, Sofela M, Yang J, Chen J, Shah N, Ball R
. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. JAMA Netw Open. 2019; 2(8):e198719.
PMC: 6686780.
DOI: 10.1001/jamanetworkopen.2019.8719.
View