6.
Gregersen N, Christensen M, Christensen E, Kolvraa S
. Riboflavin responsive multiple acyl-CoA dehydrogenation deficiency. Assessment of 3 years of riboflavin treatment. Acta Paediatr Scand. 1986; 75(4):676-81.
DOI: 10.1111/j.1651-2227.1986.tb10272.x.
View
7.
Li X, Zhan J, Hou Y, Chen S, Hou Y, Xiao Z
. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am J Transl Res. 2019; 11(10):6544-6552.
PMC: 6834524.
View
8.
Hu H, Xu F, Yang W, Ren J, Ge W, Yang P
. Apoptosis as an underlying mechanism in lymphocytes induced by riboflavin and ultraviolet light. Transfus Apher Sci. 2020; 59(6):102899.
DOI: 10.1016/j.transci.2020.102899.
View
9.
Song Y, Selak M, Watson C, Coutts C, Scherer P, Panzer J
. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD). PLoS One. 2009; 4(12):e8329.
PMC: 2791221.
DOI: 10.1371/journal.pone.0008329.
View
10.
Matusica D, Fenech M, Rogers M, Rush R
. Characterization and use of the NSC-34 cell line for study of neurotrophin receptor trafficking. J Neurosci Res. 2007; 86(3):553-65.
DOI: 10.1002/jnr.21507.
View
11.
Huang K, Duan H, Li Q, Luo Y, Yang H
. Investigation of adult-onset multiple acyl-CoA dehydrogenase deficiency associated with peripheral neuropathy. Neuropathology. 2020; 40(6):531-539.
DOI: 10.1111/neup.12667.
View
12.
Xu J, Li D, Lv J, Xu X, Wen B, Lin P
. ETFDH Mutations and Flavin Adenine Dinucleotide Homeostasis Disturbance Are Essential for Developing Riboflavin-Responsive Multiple Acyl-Coenzyme A Dehydrogenation Deficiency. Ann Neurol. 2018; 84(5):659-673.
DOI: 10.1002/ana.25338.
View
13.
Liang W, Ohkuma A, Hayashi Y, Lopez L, Hirano M, Nonaka I
. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2009; 19(3):212-6.
PMC: 10409523.
DOI: 10.1016/j.nmd.2009.01.008.
View
14.
Ishii K, Komaki H, Ohkuma A, Nishino I, Nonaka I, Sasaki M
. Central nervous system and muscle involvement in an adolescent patient with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Brain Dev. 2009; 32(8):669-72.
DOI: 10.1016/j.braindev.2009.08.008.
View
15.
Goodman S, Binard R, Woontner M, Frerman F
. Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene. Mol Genet Metab. 2002; 77(1-2):86-90.
DOI: 10.1016/s1096-7192(02)00138-5.
View
16.
Herrero Martin J, Salegi Ansa B, Alvarez-Rivera G, Dominguez-Zorita S, Rodriguez-Pombo P, Perez B
. An ETFDH-driven metabolon supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis. Nat Metab. 2024; 6(2):209-225.
PMC: 10896730.
DOI: 10.1038/s42255-023-00956-y.
View
17.
Wang Z, Hong D, Zhang W, Li W, Shi X, Zhao D
. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2016; 26(2):170-5.
DOI: 10.1016/j.nmd.2015.12.002.
View
18.
Wang Z, Chen X, Murong S, Wang N, Wu Z
. Molecular analysis of 51 unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A. J Mol Med (Berl). 2011; 89(6):569-76.
DOI: 10.1007/s00109-011-0725-7.
View
19.
Pemberton J, Pogmore J, Andrews D
. Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ. 2020; 28(1):108-122.
PMC: 7852532.
DOI: 10.1038/s41418-020-00654-2.
View
20.
Kumari S, Dhapola R, Reddy D
. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis. 2023; 28(7-8):943-957.
DOI: 10.1007/s10495-023-01848-y.
View