6.
Ghasemian E, Naghoni A, Rahvar H, Kialha M, Tabaraie B
. Evaluating the Effect of Copper Nanoparticles in Inhibiting Pseudomonas aeruginosa and Listeria monocytogenes Biofilm Formation. Jundishapur J Microbiol. 2015; 8(5):e17430.
PMC: 4537522.
DOI: 10.5812/jjm.8(5)2015.17430.
View
7.
Xu X, Brownlow W, Kyriacou S, Wan Q, Viola J
. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry. 2004; 43(32):10400-13.
DOI: 10.1021/bi036231a.
View
8.
Sundar S, Venkatachalam G, Kwon S
. Biosynthesis of Copper Oxide (CuO) Nanowires and Their Use for the Electrochemical Sensing of Dopamine. Nanomaterials (Basel). 2018; 8(10).
PMC: 6215139.
DOI: 10.3390/nano8100823.
View
9.
Ethiraj A, Joon Kang D
. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett. 2012; 7(1):70.
PMC: 3283496.
DOI: 10.1186/1556-276X-7-70.
View
10.
Priya M, Venkatesan R, Deepa S, Sana S, Arumugam S, Karami A
. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Sci Rep. 2023; 13(1):18838.
PMC: 10620180.
DOI: 10.1038/s41598-023-46002-5.
View
11.
Draviana H, Fitriannisa I, Khafid M, Krisnawati D, Widodo , Lai C
. Size and charge effects of metal nanoclusters on antibacterial mechanisms. J Nanobiotechnology. 2023; 21(1):428.
PMC: 10648733.
DOI: 10.1186/s12951-023-02208-3.
View
12.
Ferreres G, Ivanova K, Torrent-Burgues J, Tzanov T
. Multimodal silver-chitosan-acylase nanoparticles inhibit bacterial growth and biofilm formation by Gram-negative Pseudomonas aeruginosa bacterium. J Colloid Interface Sci. 2023; 646:576-586.
DOI: 10.1016/j.jcis.2023.04.184.
View
13.
Havryliuk O, Hovorukha V, Patrauchan M, Youssef N, Tashyrev O
. Draft whole genome sequence for four highly copper resistant soil isolates s strain UKR1, strain UKR2, and strains UKR3 and UKR4. Curr Res Microb Sci. 2021; 1:44-52.
PMC: 8610347.
DOI: 10.1016/j.crmicr.2020.06.002.
View
14.
Pal S, Tak Y, Song J
. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007; 73(6):1712-20.
PMC: 1828795.
DOI: 10.1128/AEM.02218-06.
View
15.
von Neubeck M, Huptas C, Gluck C, Krewinkel M, Stoeckel M, Stressler T
. Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int J Syst Evol Microbiol. 2017; 67(6):1656-1664.
DOI: 10.1099/ijsem.0.001836.
View
16.
Kaur R, Kaur K, Alyami M, Kaur Lang D, Saini B, Bayan M
. Combating Microbial Infections Using Metal-Based Nanoparticles as Potential Therapeutic Alternatives. Antibiotics (Basel). 2023; 12(5).
PMC: 10215692.
DOI: 10.3390/antibiotics12050909.
View
17.
Muhammad M, Idris A, Fan X, Guo Y, Yu Y, Jin X
. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol. 2020; 11:928.
PMC: 7253578.
DOI: 10.3389/fmicb.2020.00928.
View
18.
Bezza F, Tichapondwa S, Chirwa E
. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep. 2020; 10(1):16680.
PMC: 7541485.
DOI: 10.1038/s41598-020-73497-z.
View
19.
Ortiz de Orue Lucana D, Wedderhoff I, Groves M
. ROS-Mediated Signalling in Bacteria: Zinc-Containing Cys-X-X-Cys Redox Centres and Iron-Based Oxidative Stress. J Signal Transduct. 2011; 2012:605905.
PMC: 3184428.
DOI: 10.1155/2012/605905.
View
20.
Sahli C, Moya S, Lomas J, Gravier-Pelletier C, Briandet R, Hemadi M
. Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics. 2022; 12(5):2383-2405.
PMC: 8899562.
DOI: 10.7150/thno.67296.
View