6.
Stenkiewicz-Witeska J, Ene I
. Azole potentiation in Candida species. PLoS Pathog. 2023; 19(8):e1011583.
PMC: 10470869.
DOI: 10.1371/journal.ppat.1011583.
View
7.
Sun Y, Hung W, Chen F, Lee C, Huang H
. Interaction of tea catechin (-)-epigallocatechin gallate with lipid bilayers. Biophys J. 2009; 96(3):1026-35.
PMC: 2716638.
DOI: 10.1016/j.bpj.2008.11.007.
View
8.
Elias D, Toth Hervay N, Jacko J, Morvova M, Valachovic M, Gbelska Y
. Erg6p is essential for antifungal drug resistance, plasma membrane properties and cell wall integrity in Candida glabrata. FEMS Yeast Res. 2022; 21(1).
DOI: 10.1093/femsyr/foac045.
View
9.
Tsuchiya H
. Stereospecificity in membrane effects of catechins. Chem Biol Interact. 2001; 134(1):41-54.
DOI: 10.1016/s0009-2797(00)00308-2.
View
10.
Anand J, Rai N
. Anticandidal synergistic activity of green tea catechins, antimycotics and copper sulphate as a mean of combinational drug therapy against candidiasis. J Mycol Med. 2016; 27(1):33-45.
DOI: 10.1016/j.mycmed.2016.08.004.
View
11.
Yaakoub H, Mina S, Calenda A, Bouchara J, Papon N
. Oxidative stress response pathways in fungi. Cell Mol Life Sci. 2022; 79(6):333.
PMC: 11071803.
DOI: 10.1007/s00018-022-04353-8.
View
12.
Hirasawa M, Takada K
. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J Antimicrob Chemother. 2003; 53(2):225-9.
DOI: 10.1093/jac/dkh046.
View
13.
Wang X, Jin X, Zhao F, Xu Z, Tan W, Zhang J
. Structure-Based Optimization of Novel Sterol 24-C-Methyltransferase Inhibitors for the Treatment of Infections. J Med Chem. 2024; 67(11):9318-9341.
DOI: 10.1021/acs.jmedchem.4c00470.
View
14.
Pfaller M, Diekema D, Turnidge J, Castanheira M, Jones R
. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Species From 1997-2016. Open Forum Infect Dis. 2019; 6(Suppl 1):S79-S94.
PMC: 6419901.
DOI: 10.1093/ofid/ofy358.
View
15.
Navarro-Martinez M, Garcia-Canovas F, Rodriguez-Lopez J
. Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans. J Antimicrob Chemother. 2006; 57(6):1083-92.
DOI: 10.1093/jac/dkl124.
View
16.
Vale-Silva L, Sanglard D
. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res. 2015; 15(4):fov025.
DOI: 10.1093/femsyr/fov025.
View
17.
Abe F, Hiraki T
. Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiae. Biochim Biophys Acta. 2009; 1788(3):743-52.
DOI: 10.1016/j.bbamem.2008.12.002.
View
18.
Bencova A, Goffa E, Morvova M, Valachovic M, Griac P, Toth Hervay N
. The Absence of PDR16 Gene Restricts the Overexpression of CaSNQ2 Gene in the Presence of Fluconazole in Candida albicans. Mycopathologia. 2020; 185(3):455-465.
DOI: 10.1007/s11046-020-00459-4.
View
19.
Quindos G, Marcos-Arias C, San-Millan R, Mateo E, Eraso E
. The continuous changes in the aetiology and epidemiology of invasive candidiasis: from familiar Candida albicans to multiresistant Candida auris. Int Microbiol. 2019; 21(3):107-119.
DOI: 10.1007/s10123-018-0014-1.
View
20.
Xie J, Rybak J, Martin-Vicente A, Guruceaga X, Thorn H, Nywening A
. The sterol C-24 methyltransferase encoding gene, erg6, is essential for viability of Aspergillus species. Nat Commun. 2024; 15(1):4261.
PMC: 11106247.
DOI: 10.1038/s41467-024-48767-3.
View