6.
Yu G, He Q
. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2015; 12(2):477-9.
DOI: 10.1039/c5mb00663e.
View
7.
Chirinos R, Campos D, Martinez S, Llanos S, Betalleluz-Pallardel I, Garcia-Rios D
. The Effect of Hydrothermal Treatment on Metabolite Composition of Hass Avocados Stored in a Controlled Atmosphere. Plants (Basel). 2021; 10(11).
PMC: 8626034.
DOI: 10.3390/plants10112427.
View
8.
Serrano-Garcia I, Hurtado-Fernandez E, Gonzalez-Fernandez J, Hormaza J, Pedreschi R, Reboredo-Rodriguez P
. Prolonged on-tree maturation vs. cold storage of Hass avocado fruit: Changes in metabolites of bioactive interest at edible ripeness. Food Chem. 2022; 394:133447.
DOI: 10.1016/j.foodchem.2022.133447.
View
9.
Wang D, Yeats T, Uluisik S, Rose J, Seymour G
. Fruit Softening: Revisiting the Role of Pectin. Trends Plant Sci. 2018; 23(4):302-310.
DOI: 10.1016/j.tplants.2018.01.006.
View
10.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z
. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3):100141.
PMC: 8454663.
DOI: 10.1016/j.xinn.2021.100141.
View
11.
Shi Y, Li B, Su G, Zhang M, Grierson D, Chen K
. Transcriptional regulation of fleshy fruit texture. J Integr Plant Biol. 2022; 64(9):1649-1672.
DOI: 10.1111/jipb.13316.
View
12.
Konarska A
. The structure of the fruit peel in two varieties of Malus domestica Borkh. (Rosaceae) before and after storage. Protoplasma. 2012; 250(3):701-14.
PMC: 3659274.
DOI: 10.1007/s00709-012-0454-y.
View
13.
Cantalapiedra C, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J
. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol. 2021; 38(12):5825-5829.
PMC: 8662613.
DOI: 10.1093/molbev/msab293.
View
14.
Fernandez-Munoz R, Heredia A, Dominguez E
. The role of cuticle in fruit shelf-life. Curr Opin Biotechnol. 2022; 78:102802.
DOI: 10.1016/j.copbio.2022.102802.
View
15.
Denvir A, Arima E, Gonzalez-Rodriguez A, Young K
. Ecological and human dimensions of avocado expansion in México: Towards supply-chain sustainability. Ambio. 2021; 51(1):152-166.
PMC: 8651965.
DOI: 10.1007/s13280-021-01538-6.
View
16.
Bautista-Valle M, Camacho-Vazquez C, Elizalde-Contreras J, Monribot-Villanueva J, Limon A, Bojorquez-Velazquez E
. Comparing and integrating TMT-SPS-MS3 and label-free quantitative approaches for proteomics scrutiny in recalcitrant Mango (Mangifera indica L.) peel tissue during postharvest period. Proteomics. 2023; 24(5):e2300239.
DOI: 10.1002/pmic.202300239.
View
17.
Nunez-Lillo G, Ponce E, Arancibia-Guerra C, Carpentier S, Carrasco-Pancorbo A, Olmo-Garcia L
. A multiomics integrative analysis of color de-synchronization with softening of 'Hass' avocado fruit: A first insight into a complex physiological disorder. Food Chem. 2022; 408:135215.
DOI: 10.1016/j.foodchem.2022.135215.
View
18.
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B
. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019; 24(13).
PMC: 6651195.
DOI: 10.3390/molecules24132452.
View
19.
Yang K, Gorski S
. Protocol for analysis of RNA-sequencing and proteome profiling data for subgroup identification and comparison. STAR Protoc. 2022; 3(2):101283.
PMC: 9133752.
DOI: 10.1016/j.xpro.2022.101283.
View
20.
McAlister G, Nusinow D, Jedrychowski M, Wuhr M, Huttlin E, Erickson B
. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014; 86(14):7150-8.
PMC: 4215866.
DOI: 10.1021/ac502040v.
View