6.
Guerrero A, Herranz N, Sun B, Wagner V, Gallage S, Guiho R
. Cardiac glycosides are broad-spectrum senolytics. Nat Metab. 2019; 1(11):1074-1088.
PMC: 6887543.
DOI: 10.1038/s42255-019-0122-z.
View
7.
Wei A, Liu T, Winslow R, ORourke B
. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. J Gen Physiol. 2012; 139(6):465-78.
PMC: 3362519.
DOI: 10.1085/jgp.201210784.
View
8.
Waldmeier P, Feldtrauer J, Qian T, Lemasters J
. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol. 2002; 62(1):22-9.
DOI: 10.1124/mol.62.1.22.
View
9.
Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P
. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016; 17(7):953-64.
PMC: 4931557.
DOI: 10.15252/embr.201642077.
View
10.
Wacquier B, Combettes L, Dupont G
. Cytoplasmic and Mitochondrial Calcium Signaling: A Two-Way Relationship. Cold Spring Harb Perspect Biol. 2019; 11(10).
PMC: 6771369.
DOI: 10.1101/cshperspect.a035139.
View
11.
Kakimoto P, Serna J, de Miranda Ramos V, Zorzano A, Kowaltowski A
. Increased glycolysis is an early consequence of palmitate lipotoxicity mediated by redox signaling. Redox Biol. 2021; 45:102026.
PMC: 8187254.
DOI: 10.1016/j.redox.2021.102026.
View
12.
Elrod J, Wong R, Mishra S, Vagnozzi R, Sakthievel B, Goonasekera S
. Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest. 2010; 120(10):3680-7.
PMC: 2947235.
DOI: 10.1172/JCI43171.
View
13.
Yin Y, Shen H
. Common methods in mitochondrial research (Review). Int J Mol Med. 2022; 50(4).
PMC: 9448300.
DOI: 10.3892/ijmm.2022.5182.
View
14.
Triana-Martinez F, Picallos-Rabina P, Da Silva-Alvarez S, Pietrocola F, Llanos S, Rodilla V
. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat Commun. 2019; 10(1):4731.
PMC: 6803708.
DOI: 10.1038/s41467-019-12888-x.
View
15.
Zhang C, Cheng Y, Liu D, Liu M, Cui H, Zhang B
. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 2019; 17(1):18.
PMC: 6346555.
DOI: 10.1186/s12951-019-0451-9.
View
16.
Langmead B, Trapnell C, Pop M, Salzberg S
. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25.
PMC: 2690996.
DOI: 10.1186/gb-2009-10-3-r25.
View
17.
Shalem O, Sanjana N, Hartenian E, Shi X, Scott D, Mikkelson T
. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2013; 343(6166):84-87.
PMC: 4089965.
DOI: 10.1126/science.1247005.
View
18.
Hernandez-Segura A, Nehme J, Demaria M
. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018; 28(6):436-453.
DOI: 10.1016/j.tcb.2018.02.001.
View
19.
Ruiz S, Mayor-Ruiz C, Lafarga V, Murga M, Vega-Sendino M, Ortega S
. A Genome-wide CRISPR Screen Identifies CDC25A as a Determinant of Sensitivity to ATR Inhibitors. Mol Cell. 2016; 62(2):307-313.
PMC: 5029544.
DOI: 10.1016/j.molcel.2016.03.006.
View
20.
Koike-Yusa H, Li Y, Tan E, Del Castillo Velasco-Herrera M, Yusa K
. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014; 32(3):267-73.
DOI: 10.1038/nbt.2800.
View