Long Non-coding RNA Knockdown Assisted by CRISPR/Cas9 in Female Cancer Cell Lines Increases Mir-143
Overview
Affiliations
Background: The lncRNAs has been linked to several malignancies, including breast cancer. Our objective was to investigate the impact of urothelial carcinoma associated 1 () on cellular growth and death by a CRISPR/Cas9 knockdown technique.
Methods: In 2020, the CHOPCHOP program was utilized to design two sgRNAs targeting the ne. sgRNA1 and sgRNA2 were inserted into two different CRISPR plasmids to produce two recombinant plasmids. These recombinant plasmids were simultaneously transfected into MCF-7 and MDA-MB 231 carcinoma of the breast cells. Proliferation and apoptosis were compared using the MTT test, CCK-8 assay, and flow cytometry evaluation. RNA-hybrid software, quantitative reverse transcription PCR, and luciferase assays were utilized to confirm the relationship between and miR-143.
Results: Proliferated cells were less active in MTT and CCK-8 tests and fellow cytometry analysis. The PX459-sgRNA1,2 group had elevated levels of the cancer biomarker gene expression (<0.001). When WT- and miR-143 were co-transfected, the luciferase activity was drastically decreased.
Conclusion: One very effective method of regulating cellular proliferation in vitro is the deletion of , which CRISPR/Cas9 accomplishes.