6.
Catalano M, De Giorgi U, Bimbatti D, Buti S, Procopio G, Sepe P
. Impact of Metastatic Site in Favorable-Risk Renal Cell Carcinoma Receiving Sunitinib or Pazopanib. Clin Genitourin Cancer. 2024; 22(2):514-522.e1.
DOI: 10.1016/j.clgc.2024.01.006.
View
7.
Kase A, George D, Ramalingam S
. Clear Cell Renal Cell Carcinoma: From Biology to Treatment. Cancers (Basel). 2023; 15(3).
PMC: 9913203.
DOI: 10.3390/cancers15030665.
View
8.
Vano Y, Elaidi R, Bennamoun M, Chevreau C, Borchiellini D, Pannier D
. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 2022; 23(5):612-624.
DOI: 10.1016/S1470-2045(22)00128-0.
View
9.
Cremer T, Jongsma M, Trulsson F, Vertegaal A, Neefjes J, Berlin I
. The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. Cell Rep. 2021; 34(3):108659.
DOI: 10.1016/j.celrep.2020.108659.
View
10.
Cremer T, Voortman L, Bos E, Jongsma M, Ter Haar L, Akkermans J
. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J. 2023; 42(18):e111252.
PMC: 10505911.
DOI: 10.15252/embj.2022111252.
View
11.
Lu X, Zhang Y, Wu Y, Lu T, Yang H, Yang W
. RNF26 Promotes Pancreatic Cancer Proliferation by Enhancing RBM38 Degradation. Pancreas. 2023; 51(10):1427-1433.
DOI: 10.1097/MPA.0000000000002183.
View
12.
Yi L, Wang H, Li W, Ye K, Xiong W, Yu H
. The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis. 2021; 12(10):944.
PMC: 8516991.
DOI: 10.1038/s41419-021-04260-z.
View
13.
Liu W, Wang H, Jian C, Li W, Ye K, Ren J
. The RNF26/CBX7 axis modulates the TNF pathway to promote cell proliferation and regulate sensitivity to TKIs in ccRCC. Int J Biol Sci. 2022; 18(5):2132-2145.
PMC: 8935234.
DOI: 10.7150/ijbs.69325.
View
14.
He Z, Liu Q, Yang K, Chen C, Zhang X, Wang W
. HOXA5 is amplified in glioblastoma stem cells and promotes tumor progression by transcriptionally activating PTPRZ1. Cancer Lett. 2022; 533:215605.
DOI: 10.1016/j.canlet.2022.215605.
View
15.
Lorente G, Nelson A, Mueller S, Kuo J, Urfer R, Nikolich K
. Functional comparison of long and short splice forms of RPTPbeta: implications for glioblastoma treatment. Neuro Oncol. 2005; 7(2):154-63.
PMC: 1871891.
DOI: 10.1215/S1152851704000547.
View
16.
Nagai K, Fujii M, Kitazume S
. Protein Tyrosine Phosphatase Receptor Type Z in Central Nervous System Disease. Int J Mol Sci. 2022; 23(8).
PMC: 9024684.
DOI: 10.3390/ijms23084414.
View
17.
Shang D, Xu X, Wang D, Li Y, Liu Y
. Protein tyrosine phosphatase ζ enhances proliferation by increasing β-catenin nuclear expression in VHL-inactive human renal cell carcinoma cells. World J Urol. 2013; 31(6):1547-54.
DOI: 10.1007/s00345-013-1077-4.
View
18.
Wang V, Davis D, Haque M, Huang L, Yarchoan R
. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 2005; 65(8):3299-306.
DOI: 10.1158/0008-5472.CAN-04-4130.
View
19.
Liu Y, Shang D, Akatsuka S, Ohara H, Dutta K, Mizushima K
. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway. Am J Pathol. 2007; 171(6):1978-88.
PMC: 2111120.
DOI: 10.2353/ajpath.2007.070741.
View
20.
Fenech E, Lari F, Charles P, Fischer R, Laetitia-Thezenas M, Bagola K
. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. Elife. 2020; 9.
PMC: 7332293.
DOI: 10.7554/eLife.57306.
View