» Articles » PMID: 39443452

Collective Self-caging of Active Filaments in Virtual Confinement

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Oct 23
PMID 39443452
Authors
Affiliations
Soon will be listed here.
Abstract

Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.

Citing Articles

Topological transition in filamentous cyanobacteria: from motion to structure.

Cammann J, Faluweki M, Dambacher N, Goehring L, Mazza M Commun Phys. 2024; 7(1):376.

PMID: 39583085 PMC: 11578882. DOI: 10.1038/s42005-024-01866-5.

References
1.
Sumino Y, H Nagai K, Shitaka Y, Tanaka D, Yoshikawa K, Chate H . Large-scale vortex lattice emerging from collectively moving microtubules. Nature. 2012; 483(7390):448-52. DOI: 10.1038/nature10874. View

2.
Schaller V, Weber C, Semmrich C, Frey E, Bausch A . Polar patterns of driven filaments. Nature. 2010; 467(7311):73-7. DOI: 10.1038/nature09312. View

3.
Kantsler V, Dunkel J, Polin M, Goldstein R . Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc Natl Acad Sci U S A. 2013; 110(4):1187-92. PMC: 3557090. DOI: 10.1073/pnas.1210548110. View

4.
Faluweki M, Goehring L . Structural mechanics of filamentous cyanobacteria. J R Soc Interface. 2022; 19(192):20220268. PMC: 9326267. DOI: 10.1098/rsif.2022.0268. View

5.
Isele-Holder R, Jager J, Saggiorato G, Elgeti J, Gompper G . Dynamics of self-propelled filaments pushing a load. Soft Matter. 2016; 12(41):8495-8505. DOI: 10.1039/c6sm01094f. View