6.
Raissi M, Yazdani A, Karniadakis G
. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science. 2020; 367(6481):1026-1030.
PMC: 7219083.
DOI: 10.1126/science.aaw4741.
View
7.
Schwarz E, Pfaller M, Szafron J, Latorre M, Lindsey S, Breuer C
. A Fluid-Solid-Growth Solver for Cardiovascular Modeling. Comput Methods Appl Mech Eng. 2023; 417(Pt B).
PMC: 10691594.
DOI: 10.1016/j.cma.2023.116312.
View
8.
Boileau E, Pant S, Roobottom C, Sazonov I, Deng J, Xie X
. Estimating the accuracy of a reduced-order model for the calculation of fractional flow reserve (FFR). Int J Numer Method Biomed Eng. 2017; 34(1).
DOI: 10.1002/cnm.2908.
View
9.
Santamore W, Burkhoff D
. Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol. 1991; 260(1 Pt 2):H146-57.
DOI: 10.1152/ajpheart.1991.260.1.H146.
View
10.
Vogel M, Cheung M, Li J, Kristiansen S, Schmidt M, White P
. Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation. 2003; 107(12):1647-52.
DOI: 10.1161/01.CIR.0000058171.62847.90.
View
11.
Fan L, Choy J, Raissi F, Kassab G, Lee L
. Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model. Comput Biol Med. 2021; 141:105050.
PMC: 8810745.
DOI: 10.1016/j.compbiomed.2021.105050.
View
12.
Martens P, Vercammen J, Ceyssens W, Jacobs L, Luwel E, Van Aerde H
. Effects of intravenous home dobutamine in palliative end-stage heart failure on quality of life, heart failure hospitalization, and cost expenditure. ESC Heart Fail. 2018; 5(4):562-569.
PMC: 6073033.
DOI: 10.1002/ehf2.12248.
View
13.
Schwarz E, Pegolotti L, Pfaller M, Marsden A
. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. Biophys Rev (Melville). 2023; 4(1):011301.
PMC: 9846834.
DOI: 10.1063/5.0109400.
View
14.
Tuttle R, Mills J
. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res. 1975; 36(1):185-96.
DOI: 10.1161/01.res.36.1.185.
View
15.
Muller L, Toro E
. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Numer Method Biomed Eng. 2014; 30(7):681-725.
DOI: 10.1002/cnm.2622.
View
16.
Patel T, Li C, Raissi F, Kassab G, Gao T, Lee L
. Coupled thermal-hemodynamics computational modeling of cryoballoon ablation for pulmonary vein isolation. Comput Biol Med. 2023; 157:106766.
DOI: 10.1016/j.compbiomed.2023.106766.
View
17.
Burkhoff D, Yue D, Oikawa R, Franz M, Schaefer J, Sagawa K
. Influence of ventricular contractility on non-work-related myocardial oxygen consumption. Heart Vessels. 1987; 3(2):66-72.
DOI: 10.1007/BF02058521.
View
18.
Toy S, Melbin J, Noordergraaf A
. Reduced models of arterial systems. IEEE Trans Biomed Eng. 1985; 32(2):174-6.
DOI: 10.1109/TBME.1985.325439.
View
19.
Liang L, Liu M, Elefteriades J, Sun W
. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics. Comput Methods Appl Mech Eng. 2024; 416.
PMC: 10871671.
DOI: 10.1016/j.cma.2023.116347.
View
20.
Muller L, Fossan F, Braten A, Jorgensen A, Wiseth R, Hellevik L
. Impact of baseline coronary flow and its distribution on fractional flow reserve prediction. Int J Numer Method Biomed Eng. 2019; 37(11):e3246.
DOI: 10.1002/cnm.3246.
View