6.
Maekawa M
. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull. 2024; 47(6):1087-1105.
DOI: 10.1248/bpb.b24-00073.
View
7.
Chen Y, Zhou Y, Ren R, Chen Y, Lei J, Li Y
. Harnessing lipid metabolism modulation for improved immunotherapy outcomes in lung adenocarcinoma. J Immunother Cancer. 2024; 12(7).
PMC: 11256034.
DOI: 10.1136/jitc-2024-008811.
View
8.
Cheng Y, Jones J, Yu T, Olzomer E, Su J, Katen A
. Design, synthesis and biological evaluation of glucose metabolism inhibitors as anticancer agents. Bioorg Chem. 2024; 151:107665.
DOI: 10.1016/j.bioorg.2024.107665.
View
9.
Qannita R, Alalami A, Harb A, Aleidi S, Taneera J, Abu-Gharbieh E
. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel). 2024; 17(2).
PMC: 10892333.
DOI: 10.3390/ph17020195.
View
10.
Noriega Landa E, Quaye G, Su X, Badmos S, Holbrook K, Polascik T
. Urinary fatty acid biomarkers for prostate cancer detection. PLoS One. 2024; 19(2):e0297615.
PMC: 10857612.
DOI: 10.1371/journal.pone.0297615.
View
11.
Zhu L, Zhu X, Wu Y
. Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules. 2022; 12(4).
PMC: 9028125.
DOI: 10.3390/biom12040580.
View
12.
Taunk K, Jajula S, Bhavsar P, Choudhari M, Bhanuse S, Tamhankar A
. The prowess of metabolomics in cancer research: current trends, challenges and future perspectives. Mol Cell Biochem. 2024; 480(2):693-720.
DOI: 10.1007/s11010-024-05041-w.
View
13.
Gubser P, Wijesinghe S, Heyden L, Gabriel S, de Souza D, Hess C
. Aerobic glycolysis but not GLS1-dependent glutamine metabolism is critical for anti-tumor immunity and response to checkpoint inhibition. Cell Rep. 2024; 43(8):114632.
DOI: 10.1016/j.celrep.2024.114632.
View
14.
Zhou L, Ji Q, Peng H, Chen F, Zheng Y, Jiao Z
. Automatic image segmentation and online survival prediction model of medulloblastoma based on machine learning. Eur Radiol. 2023; 34(6):3644-3655.
DOI: 10.1007/s00330-023-10316-9.
View
15.
Majtan T, Olsen T, Sokolova J, Krijt J, Krizkova M, Ida T
. Deciphering pathophysiological mechanisms underlying cystathionine beta-synthase-deficient homocystinuria using targeted metabolomics, liver proteomics, sphingolipidomics and analysis of mitochondrial function. Redox Biol. 2024; 73:103222.
PMC: 11190558.
DOI: 10.1016/j.redox.2024.103222.
View
16.
Fang H, Wang L, Yu L, Shen F, Yang Z, Yang Y
. Effects of metformin on Sonic hedgehog subgroup medulloblastoma progression: and studies. Front Pharmacol. 2022; 13:928853.
PMC: 9585190.
DOI: 10.3389/fphar.2022.928853.
View
17.
Park M, Jin J, An D, Kim D, Lee J, Yun J
. Targeting YAP Activity and Glutamine Metabolism Cooperatively Suppresses Tumor Progression by Preventing Extracellular Matrix Accumulation. Cancer Res. 2024; 84(20):3388-3401.
DOI: 10.1158/0008-5472.CAN-23-3933.
View
18.
Wu G, Liu J, Shi H, Pan B, Li M, Wang X
. The associations between dysregulation of human blood metabolites and lung cancer risk: evidence from genetic data. BMC Cancer. 2024; 24(1):854.
PMC: 11256634.
DOI: 10.1186/s12885-024-12416-1.
View
19.
Dar M, Arafah A, Bhat K, Khan A, Khan M, Ali A
. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics. 2022; 22(2):76-96.
DOI: 10.1093/bfgp/elac017.
View
20.
Zeng Y, Luo Y, Zhao K, Liu S, Wu K, Wu Y
. m6A-Mediated Induction of 7-Dehydrocholesterol Reductase Stimulates Cholesterol Synthesis and cAMP Signaling to Promote Bladder Cancer Metastasis. Cancer Res. 2024; 84(20):3402-3418.
DOI: 10.1158/0008-5472.CAN-23-3703.
View