6.
Ogonczyk D, Glab S, Koncki R
. An automated potentiometric assay for acid phosphatase. Anal Biochem. 2008; 381(1):169-71.
DOI: 10.1016/j.ab.2008.06.012.
View
7.
Stankiewicz P, Gresser M
. Inhibition of phosphatase and sulfatase by transition-state analogues. Biochemistry. 1988; 27(1):206-12.
DOI: 10.1021/bi00401a031.
View
8.
Liu X, Yan L, Ren H, Cai Y, Liu C, Zeng L
. Facile synthesis of magnetic hierarchical flower-like CoO spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens Bioelectron. 2020; 165:112342.
DOI: 10.1016/j.bios.2020.112342.
View
9.
Momeni F, Khoshfetrat S, Bagheri H, Zarei K
. TiC MXene-based nanozyme as coreaction accelerator for enhancing electrochemiluminescence of glucose biosensing. Biosens Bioelectron. 2024; 250:116078.
DOI: 10.1016/j.bios.2024.116078.
View
10.
Wang Q, Liu S, Tang Z
. Recent progress in the design of analytical methods based on nanozymes. J Mater Chem B. 2021; 9(39):8174-8184.
DOI: 10.1039/d1tb01521d.
View
11.
Zhang W, Ma D, Du J
. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta. 2014; 120:362-7.
DOI: 10.1016/j.talanta.2013.12.028.
View
12.
Fan S, Jiang X, Yang M, Wang X
. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem. 2021; 413(15):3955-3963.
DOI: 10.1007/s00216-021-03347-y.
View
13.
Su J, Lu S, Wei Z, Li B, Li J, Sun J
. Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity. Small. 2022; 18(16):e2200897.
DOI: 10.1002/smll.202200897.
View
14.
Zhao X, Li Z, Ding Z, Wang S, Lu Y
. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J Colloid Interface Sci. 2022; 626:296-304.
DOI: 10.1016/j.jcis.2022.06.124.
View
15.
Pan X, Chen J, Wu N, Qi Y, Xu X, Ge J
. Degradation of aqueous 2,4,4'-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Res. 2018; 143:176-187.
DOI: 10.1016/j.watres.2018.06.038.
View
16.
Floyd R, Soong L
. Spin trapping in biological systems. Oxidation of the spin trap 5,5-dimethyl-1-pyrroline-1-oxide by a hydroperoxide-hematin-system. Biochem Biophys Res Commun. 1977; 74(1):79-84.
DOI: 10.1016/0006-291x(77)91377-8.
View
17.
Su L, Dong W, Wu C, Gong Y, Zhang Y, Li L
. The peroxidase and oxidase-like activity of NiCoO mesoporous spheres: Mechanistic understanding and colorimetric biosensing. Anal Chim Acta. 2016; 951:124-132.
DOI: 10.1016/j.aca.2016.11.035.
View
18.
Dong J, Song L, Yin J, He W, Wu Y, Gu N
. Co₃O₄ nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces. 2014; 6(3):1959-70.
DOI: 10.1021/am405009f.
View
19.
Wu T, Ma Z, Li P, Liu M, Liu X, Li H
. Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe-Co bimetallic alloy encapsulated porous carbon nanocages. Talanta. 2019; 202:354-361.
DOI: 10.1016/j.talanta.2019.05.034.
View
20.
Wu R, Sun M, Liu X, Qin F, Zhang X, Qian Z
. Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing. Anal Chem. 2022; 94(41):14308-14316.
DOI: 10.1021/acs.analchem.2c02853.
View