6.
Lencer D, Salinga M, Wuttig M
. Design rules for phase-change materials in data storage applications. Adv Mater. 2011; 23(18):2030-58.
DOI: 10.1002/adma.201004255.
View
7.
Xu Y, Wang X, Zhang W, Schafer L, Reindl J, Vom Bruch F
. Materials Screening for Disorder-Controlled Chalcogenide Crystals for Phase-Change Memory Applications. Adv Mater. 2021; 33(9):e2006221.
PMC: 11468882.
DOI: 10.1002/adma.202006221.
View
8.
Ding K, Wang J, Zhou Y, Tian H, Lu L, Mazzarello R
. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science. 2019; 366(6462):210-215.
DOI: 10.1126/science.aay0291.
View
9.
Rao F, Ding K, Zhou Y, Zheng Y, Xia M, Lv S
. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science. 2017; 358(6369):1423-1427.
DOI: 10.1126/science.aao3212.
View
10.
Wuttig M, Lusebrink D, Wamwangi D, Welnic W, Gillessen M, Dronskowski R
. The role of vacancies and local distortions in the design of new phase-change materials. Nat Mater. 2006; 6(2):122-8.
DOI: 10.1038/nmat1807.
View
11.
Caravati S, Bernasconi M, Parrinello M
. First principles study of the optical contrast in phase change materials. J Phys Condens Matter. 2011; 22(31):315801.
DOI: 10.1088/0953-8984/22/31/315801.
View
12.
Sun Z, Zhou J, Ahuja R
. Structure of phase change materials for data storage. Phys Rev Lett. 2006; 96(5):055507.
DOI: 10.1103/PhysRevLett.96.055507.
View
13.
Zhang W, Wuttig M, Mazzarello R
. Effects of stoichiometry on the transport properties of crystalline phase-change materials. Sci Rep. 2015; 5:13496.
PMC: 4558572.
DOI: 10.1038/srep13496.
View
14.
Zhu M, Cojocaru-Miredin O, Mio A, Keutgen J, Kupers M, Yu Y
. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding. Adv Mater. 2018; 30(18):e1706735.
DOI: 10.1002/adma.201706735.
View
15.
Goedecker , Teter , HUTTER
. Separable dual-space Gaussian pseudopotentials. Phys Rev B Condens Matter. 1996; 54(3):1703-1710.
DOI: 10.1103/physrevb.54.1703.
View
16.
Wuttig M, Yamada N
. Phase-change materials for rewriteable data storage. Nat Mater. 2007; 6(11):824-32.
DOI: 10.1038/nmat2009.
View
17.
Zheng Y, Cheng Y, Huang R, Qi R, Rao F, Ding K
. Surface Energy Driven Cubic-to-Hexagonal Grain Growth of GeSbTe Thin Film. Sci Rep. 2017; 7(1):5915.
PMC: 5517630.
DOI: 10.1038/s41598-017-06426-2.
View
18.
He S, Zhu L, Zhou J, Sun Z
. Metastable Stacking-Polymorphism in GeSbTe. Inorg Chem. 2017; 56(19):11990-11997.
DOI: 10.1021/acs.inorgchem.7b01970.
View
19.
Zhang W, Thiess A, Zalden P, Zeller R, Dederichs P, Raty J
. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat Mater. 2012; 11(11):952-6.
DOI: 10.1038/nmat3456.
View
20.
Maier S, Steinberg S, Cheng Y, Schon C, Schumacher M, Mazzarello R
. Discovering Electron-Transfer-Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O). Adv Mater. 2020; 32(49):e2005533.
DOI: 10.1002/adma.202005533.
View