6.
Nguyen T, Jones J, Wolter W, Perez R, Schroeder V, Champion M
. Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinase-9. Wound Repair Regen. 2019; 28(2):194-201.
DOI: 10.1111/wrr.12782.
View
7.
Lingappan K
. NF-κB in Oxidative Stress. Curr Opin Toxicol. 2018; 7:81-86.
PMC: 5978768.
DOI: 10.1016/j.cotox.2017.11.002.
View
8.
. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999; 30(12):2752-8.
DOI: 10.1161/01.str.30.12.2752.
View
9.
Caley M, Martins V, OToole E
. Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle). 2015; 4(4):225-234.
PMC: 4397992.
DOI: 10.1089/wound.2014.0581.
View
10.
Peng Z, Nguyen T, Song W, Anderson B, Wolter W, Schroeder V
. Selective MMP-9 Inhibitor ()-ND-336 Alone or in Combination with Linezolid Accelerates Wound Healing in Infected Diabetic Mice. ACS Pharmacol Transl Sci. 2021; 4(1):107-117.
PMC: 7887744.
DOI: 10.1021/acsptsci.0c00104.
View
11.
Guo S, DiPietro L
. Factors affecting wound healing. J Dent Res. 2010; 89(3):219-29.
PMC: 2903966.
DOI: 10.1177/0022034509359125.
View
12.
Veith A, Henderson K, Spencer A, Sligar A, Baker A
. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2018; 146:97-125.
PMC: 6435442.
DOI: 10.1016/j.addr.2018.09.010.
View
13.
Greer N, Foman N, MacDonald R, Dorrian J, Fitzgerald P, Rutks I
. Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: a systematic review. Ann Intern Med. 2013; 159(8):532-42.
DOI: 10.7326/0003-4819-159-8-201310150-00006.
View
14.
Rodgers K, Espinoza T, Felix J, Roda N, Maldonado S, diZerega G
. Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue, NorLeu3-A(1-7). Plast Reconstr Surg. 2003; 111(3):1195-206.
DOI: 10.1097/01.PRS.0000047403.23105.66.
View
15.
Guo P, Hu B, Gu W, Xu L, Wang D, Huang H
. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003; 162(4):1083-93.
PMC: 1851242.
DOI: 10.1016/S0002-9440(10)63905-3.
View
16.
Li Z, Guo S, Yao F, Zhang Y, Li T
. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers. J Diabetes Complications. 2013; 27(4):380-2.
DOI: 10.1016/j.jdiacomp.2012.12.007.
View
17.
Hattori N, Mochizuki S, Kishi K, Nakajima T, Takaishi H, DArmiento J
. MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol. 2009; 175(2):533-46.
PMC: 2716954.
DOI: 10.2353/ajpath.2009.081080.
View
18.
Sharma R, Sharma S, Mudgal S, Jelly P, Thakur K
. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci Rep. 2021; 11(1):2189.
PMC: 7838311.
DOI: 10.1038/s41598-021-81886-1.
View
19.
Gao M, Nguyen T, Suckow M, Wolter W, Gooyit M, Mobashery S
. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015; 112(49):15226-31.
PMC: 4679041.
DOI: 10.1073/pnas.1517847112.
View
20.
Nguyen T, Ding D, Wolter W, Perez R, Champion M, Mahasenan K
. Validation of Matrix Metalloproteinase-9 (MMP-9) as a Novel Target for Treatment of Diabetic Foot Ulcers in Humans and Discovery of a Potent and Selective Small-Molecule MMP-9 Inhibitor That Accelerates Healing. J Med Chem. 2018; 61(19):8825-8837.
DOI: 10.1021/acs.jmedchem.8b01005.
View