6.
Van Alstyne M, Tattoli I, Delestree N, Recinos Y, Workman E, Shihabuddin L
. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021; 24(7):930-940.
PMC: 8254787.
DOI: 10.1038/s41593-021-00827-3.
View
7.
Rudich P, Watkins S, Lamitina T
. PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions. PLoS One. 2020; 15(4):e0227464.
PMC: 7117740.
DOI: 10.1371/journal.pone.0227464.
View
8.
Van Alstyne M, Simon C, Sardi S, Shihabuddin L, Mentis G, Pellizzoni L
. Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev. 2018; 32(15-16):1045-1059.
PMC: 6075148.
DOI: 10.1101/gad.316059.118.
View
9.
Holmes B, Furman J, Mahan T, Yamasaki T, Mirbaha H, Eades W
. Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A. 2014; 111(41):E4376-85.
PMC: 4205609.
DOI: 10.1073/pnas.1411649111.
View
10.
Jiang L, Zhu W, Zhao G, Cao L
. Spinocerebellar ataxia type 8 presents as progressive supranuclear palsy. Neurosciences (Riyadh). 2023; 28(3):199-203.
PMC: 10519649.
DOI: 10.17712/nsj.2023.3.20230032.
View
11.
Kumar M, Sahni S, A V, Kumar D, Kushwah N, Goel D
. Molecular clues unveiling spinocerebellar ataxia type-12 pathogenesis. iScience. 2024; 27(5):109768.
PMC: 11070597.
DOI: 10.1016/j.isci.2024.109768.
View
12.
Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke T, Cain P
. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun. 2013; 1:34.
PMC: 3893396.
DOI: 10.1186/2051-5960-1-34.
View
13.
Mirbaha H, Chen D, Mullapudi V, Terpack S, White 3rd C, Joachimiak L
. Seed-competent tau monomer initiates pathology in a tauopathy mouse model. J Biol Chem. 2022; 298(8):102163.
PMC: 9307951.
DOI: 10.1016/j.jbc.2022.102163.
View
14.
Yonenobu Y, Beck G, Kido K, Maeda N, Yamashita R, Inoue K
. Neuropathology of spinocerebellar ataxia type 8: Common features and unique tauopathy. Neuropathology. 2023; 43(5):351-361.
DOI: 10.1111/neup.12894.
View
15.
Samudra N, Lane-Donovan C, VandeVrede L, Boxer A
. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest. 2023; 133(12).
PMC: 10266783.
DOI: 10.1172/JCI168553.
View
16.
McMillan P, Strovas T, Baum M, Mitchell B, Eck R, Hendricks N
. Pathological tau drives ectopic nuclear speckle scaffold protein SRRM2 accumulation in neuron cytoplasm in Alzheimer's disease. Acta Neuropathol Commun. 2021; 9(1):117.
PMC: 8243890.
DOI: 10.1186/s40478-021-01219-1.
View
17.
Lester E, Van Alstyne M, McCann K, Reddy S, Cheng L, Kuo J
. Cytosolic condensates rich in polyserine define subcellular sites of tau aggregation. Proc Natl Acad Sci U S A. 2023; 120(3):e2217759120.
PMC: 9934293.
DOI: 10.1073/pnas.2217759120.
View
18.
Lilliu E, Villeri V, Pelassa I, Cesano F, Scarano D, Fiumara F
. Polyserine repeats promote coiled coil-mediated fibril formation and length-dependent protein aggregation. J Struct Biol. 2018; 204(3):572-584.
DOI: 10.1016/j.jsb.2018.09.001.
View
19.
Ayhan F, Perez B, Shorrock H, Zu T, Banez-Coronel M, Reid T
. SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J. 2018; 37(19).
PMC: 6166133.
DOI: 10.15252/embj.201899023.
View
20.
Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C
. Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. Elife. 2020; 9.
PMC: 7787664.
DOI: 10.7554/eLife.56630.
View